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Preface 
The AIHW National Injury Surveillance Unit (NISU) undertakes analysis and 
reporting on mortality and morbidity data for injury in Australia. The process of 
analysis presents many technical issues which require careful consideration. For 
example, what is the best way to make comparisons between population groups 
and measure trends in mortality and morbidity over time? How should we deal 
with random variation when case numbers are small? What is the best way to 
express uncertainty for an estimate? These are methodological questions for 
descriptive epidemiology. Most textbooks of epidemiology do not focus on the 
descriptive aspect of the discipline. We have found that the literature addressing 
these questions is dispersed in many different sources. In addition, the specific 
ways in which this information can be applied in injury surveillance is not 
always obvious.  
This report was compiled in response to the need to provide a readily accessible 
guide to NISU staff on appropriate statistical methods for reporting injury. The 
aim is to provide a systematic guide on how to report injury in a 
methodologically robust manner. The report draws on a wide range of data 
sources and draws them together with practical examples pertinent to the injury 
field. It is written assuming the reader has only a basic knowledge of statistics 
and therefore complicated technical theory and use of mathematical notation has 
been kept to a minimum. The reader is recommended to consult the references 
for a more comprehensive coverage of statistical theory or for further clarification 
on any of the methods described. 
This is the first methods handbook that we have developed. It does not cover all 
of the issues that might have been included, and there is potential to expand on 
the treatment of those that are covered. This document might be developed 
further or separate documents might be written to cover other topics. These 
issues that arise when we undertake descriptive epidemiology of injury at NISU 
are likely to arise when similar work is done elsewhere, on injury or other topics. 
This is why we are publishing what began as a guide envisaged as being only for 
internal use. We would welcome feedback on it. 
 
James Harrison 
Director, Research Centre for Injury Studies  
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1 Confidence intervals 
National morbidity and mortality statistics are usually based on counts of all cases of a 
condition or cause of death occurring in a specified population during a specified time. 
Such values are subject to errors in the registration process e.g. missing or incomplete 
data or poor data collection, but are not subject to the sampling error that arises when 
calculating estimates based on a random sample of cases.1 
Rates and percentages based on a count of all cases (i.e. a census of cases) are subject to 
random variation.1  A rate observed in a particular year can be considered an estimate 
of the true or underlying rate—the rate observed is one of a large series of possible 
results that could have arisen under the same circumstances. The time periods used to 
group cases (e.g. calendar year) are arbitrary, and use of another period (e.g. financial 
year) would result in different rates. 
To interpret a point estimate, we need some indication of its precision. This is provided 
by the confidence interval (CI) which states the probability of containing the true value. 
Most are calculated as 95% CIs—there is a 95% chance that the confidence interval 
covers the true value; less frequently 90% or 99% limits may be used. 
When viewing data in a graph, it may be tempting to draw conclusions about the 
statistical significance of differences between group means by looking at whether their 
confidence intervals overlap. For example, if the CIs around the age-adjusted rates for 
two States overlap, it may seem reasonable to conclude the rates are not significantly 
different, and vice versa. Although this may be a good approximation to a statistical 
test, it is not equivalent to one.1 A confidence interval is constructed by taking into 
account the population size and variance in the group (e.g. State) for which it was 
constructed.1 A proper statistical test will take into account the larger pooled size of the 
two groups when evaluating the difference between their means, and therefore can 
provide different results.1 This means that in some cases an appropriate statistical test 
will indicate a statistically significant difference exists even though the CIs of two 
groups overlap.1 However, if two CIs do not overlap, an appropriate statistical test will 
always indicate there is a significant difference between them.1 While providing a 
convenient indication of precision, CIs are not appropriate to be used for testing for 
differences between groups or trends over time, which requires specific statistical tests 
(see Section 3). 
Random variation can be substantial when the measure, such as a rate or percentage, 
has a small number of events in the numerator (e.g. less than 20), especially when the 
denominator (population) is also relatively small. As the population size increases, the 
standard error becomes smaller and hence the Cl becomes narrower. When 
interpreting CIs, it is important to include a commentary about the probability that 
differences or trends observed may be due to random variation due to small numbers 
(and resulting wider confidence intervals). Methods for calculating CIs for crude rates, 
age-specific rates, and age-adjusted rates for small and large population sizes are 
outlined in Section 2.8–2.10. 
Many reports from agencies such as the Australian Institute of Health and Welfare 
(AIHW) display graphs which depict age-standardised mortality rates over time. 
However, few of these graphs ever use CIs around the mean. This pattern is also 
apparent in many peer-reviewed journal articles. 
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Many graphs follow this format: 
 

 

 
Figure 1.1: Secular trends in age-
standardised mortality per 100,000 
population from coronary heart disease 
for men and women, 1921–98, England 
and Wales2 

 

Few graphs use confidence intervals: 
 

 
Figure 1.2: 95% Confidence bands around 
age-standardised five year average 
mortalities per 100,000 person-years from 
malignant melanoma: Australia 1960–4 to 
1990–43  

Line graphs artificially connect the rates at consecutive time-points, and impose an 
interpretation on the reader of the pattern of the age-standardised rate by year. If more 
time-points were collected and graphed, the shape of the line would be subject to more 
variation although the overall trend would remain unchanged. At each time-point, 95% 
CIs can be estimated for the age-standardised rate. Separate ‘I’ bands can be displayed 
for each observation, or the upper CIs can be joined together, as can the age-
standardised rate and the lower CIs, to give a series of three connected lines. Another 
option is to shade in the area between the upper and lower CIs to give a 95% 
confidence band. 
Is there any statistical reason why CIs are often not displayed in publications? Or is it 
appropriate to use CIs for these type of graphs in future National Injury Surveillance 
Unit (NISU) reports? Including CIs would provide a measure of the variability of the 
data, and indicate that the mortality profile of two groups differ when the CIs of the 
two groups do not overlap. 

1.1 Justification for use 
A search of the medical literature and other publications4, 5 identified the following 
considerations when graphing data. Cleveland6, Kosslyn7, and Gillan et al 8 advocate 
the use of error bars to show variability in the data being graphed. This involves 
placing an ‘I’ bar on each plotting symbol in a line graph or on the topmost horizontal 
of a bar in a bar graph. Bryant9 suggests that if the author wishes to show the variation 
of the group mean, then it is better to use a CI bar to show this, as opposed to a mean ± 
standard error bar. In this context, standard error bars usually depict 95% confidence 
limits.6 
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1.2 Common problems with use 
Bryant9 noted that a common problem with error bars is that they are often undefined 
in the text and can add clutter to the graph. Cleveland6 suggests that error bars should 
be unambiguous and clearly explained in the text or in the caption. A recent 
experimental study showed that reader comprehension of CIs was improved when a 
definition was included with the graph.5 The explanation of the CI used was that they 
‘indicate statistical uncertainty about each value on the graph. Longer intervals mean 
more uncertainty. When two intervals overlap there is more uncertainty that the 
groups are really different.’4  

1.3 Strategies for best presentation 
Confidence intervals work well in a graph when there are only 2–6 data points, but 
when there are many points, they can obscure the data and detract from the depiction 
of any trends. If the graph is too cluttered, CIs can be put in a table accompanying the 
graph or in the text of the results section.  
In line, bar or column graphs that use error bars to show variability, do not make the 
error bars thick and dark relative to the data point markers on the graph.8 Figure 1.3 
shows a line graph where the error bars overlap and are cluttered so that the reader 
cannot distinguish the error bars for data at the same level of the independent variable 
on the x axis.  
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 Figure 1.3: Line graph—age-standardised mortality rates due to unintentional motor vehicle 
traffic accidents, NSW and QLD, 2000 
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To avoid this situation, the following suggestions are recommended: 
 
1 Display the data in a bar or a column graph—the bar indicators for data at the 

same level of the independent variable are not vertically aligned (as in Figure 1.3), 
so the error bars won’t overlap (see Figure 1.4).8 However, for most graphs of 
trends, line graphs are easier to follow than bar graphs. 
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 Figure 1.4: Bar graph—age-standardised mortality rates due to unintentional motor vehicle 
traffic accidents, NSW and QLD, 2000 
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2 Show only the top half of the error bar on the upper line and the bottom half of the 
error bars on the bottom line (see Figure 1.5).8 
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 Figure 1.5: Line graph with half ‘I’ bars—age-standardised mortality rates due to 
unintentional motor vehicle traffic accidents, NSW and QLD, 2000 

 

Kosslyn supports the use of half ‘I’ bars in all bar and line graphs, though recommends 
full ‘I’ bars in scatter plots.7 However, CIs are not always symmetrical about the point 
estimate, which is often the case in the analysis of population health data and therefore 
half ‘I’ bars should be used judiciously. Many readers find half ‘I’ bars difficult to 
comprehend even when CIs are symmetrical, for this reason it may be preferable to 
avoid using half ‘I’ bars altogether. 
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3 If there are too many data points (see Figure 1.6), such that the graph becomes 
unintelligible, then a summary plot using just the mean values is advisable (see 
Figure 1.7).9  
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 Figure 1.6: Line graph—age-standardised mortality rates due to unintentional motor vehicle 
traffic accidents, all States, 2000 
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 Figure 1.7: Summary plot—age-standardised mortality rates due to unintentional motor 

vehicle traffic accidents, all Australia, 2000 
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The summary plot must present a reasonable summary of the trends seen from 
individual plots and should not hide interesting effects because of the averaging 
process.9 In Figure 1.6, the Northern Territory had a much higher traffic accident 
mortality rate than the other States and Territories. This fact is hidden if Figure 1.7 is 
the only graph presented. In this instance, it may be preferable to present the data for 
each of the states as a series of individual plots using identical scales.9 Examining 
interstate differences for injury risk is often considered important, therefore it is likely 
to be worthwhile including a series of individual plots. Alternatively, the average 
mortality rate can be graphed and the state differences described in the text or 
tabulated. 

1.4 Issues of independence 
A basic assumption in constructing CIs is that the observations are independent.10 That 
is, the errors associated with one observation are not correlated with the errors of any 
other observation. In general, we would expect mortality data to meet the assumption 
of independence between events, except in epidemics.11 However, there may be 
instances where the assumption of independence between events does not hold. An 
example is yearly trends in hospital separation rates for a disease where individuals 
may be hospitalised many times e.g. asthma. A person who is hospitalised once for 
asthma is more likely to be readmitted for asthma than a person who has never been 
hospitalised for asthma. This may make it likely that errors for observations between 
adjacent time periods are more highly correlated than for observations more separated 
in time; known as autocorrelation.10 Most commonly, autocorrelation leads to standard 
errors that are too small, so that the CIs are too narrow.12 
For any NISU graphs, it is worthwhile considering whether autocorrelation is plausible 
(e.g. hospital separation data for a disease with multiple readmissions). Testing for 
autocorrelation would require statistical analysis of the data. Of the methods described 
in Section 3 for measuring trends over time, least squares, logistic and Poisson 
regression assume that errors in the modelled observations are independent 
(uncorrelated).12 Yearly counts of deaths data and hospital separations are likely to 
follow a Poisson distribution, but if there is greater variability due to autocorrelation 
which can be determined using a goodness-of-fit test for the Poisson model, the 
Negative Binomial Distribution can be used to account for overdispersion (see Section 
3). Time series analysis is another statistical method available which assumes errors are 
correlated.12 However, it requires a particular data format and advanced technical 
expertise that makes it impractical for routine NISU surveillance. 
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1.5 Conclusion 
For future reports for NISU which depict age-standardised mortality or hospital 
separation rates over a period of time, it is acceptable to report CIs as ‘I’ bands, 
connected upper and lower lines around the mean or as shaded bands unless the graph 
is too cluttered, in which case, plotting just the mean values is advisable. Confidence 
intervals are not a test for differences between means or for detecting trends over time, 
rather appropriate statistical tests must be applied. A consideration before constructing 
CIs is whether the observations meet the assumption of independence. There are 
instances where the assumption of independence between the numbers of occurrences 
of the event in disjoint time intervals may not hold for mortality and morbidity data. 
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2 Age-standardisation and 
small case numbers 

The term ‘standardisation’ refers to a procedure which facilitates the comparison of a 
summary measure (commonly mortality or morbidity rates) across groups. Most 
commonly, rates are standardised by adjusting for age, because death or morbid events 
occur with different frequencies among groups of different ages. However, the same 
principle can be applied to standardise groups according to other variables that may 
differ between them e.g. sex or remoteness of usual residence. Rates can be 
standardised for two or more variables simultaneously. An example is age-sex 
standardisation, which determines what the rates in a particular group would be if the 
group had the same sex and age make-up as the standard population. 
Age-standardisation is a procedure for adjusting rates to minimise the effects of 
differences in age composition, thus enabling valid comparison of rates for populations 
that have differing age compositions. Age-standardisation is used to compare risks of 
two or more populations at one point in time (e.g. populations in different 
geographical areas) or one population at two or more points in time. 

2.1 Mortality rates 
Mortality data can be used to provide information on the health of populations relative 
to one another and to assess changes in mortality over time. To do this, the data must 
meet two criteria, 1) mortality rates should relate the number of events to the 
population at risk, and 2) since many health outcomes vary by age, the effect of the 
population’s age distribution must be taken into account. 
The simplest death rate is the crude mortality rate. This is defined as the total number 
of deaths divided by the mid-year population, and is usually expressed as a rate per 
1,000 or 100,000 population. For individual age cohorts (e.g. 0–4 years), the crude 
mortality rates are called age-specific mortality rates. The age-specific mortality rates 
are defined as the ratio of the number of deaths in a given age group to the population 
of that age group, and are usually expressed per 1,000 or 100,000 population.  
The crude mortality rate does relate the number of events to the population, but does 
not take into account the age distribution of the population and therefore is not 
suitable to be used to compare differences between population groups or for assessing 
change in mortality over time. Age-specific mortality rates between population groups 
can be compared because if the age range is narrow, age will have little effect on 
mortality. A summary index (e.g. age-standardised rates) of two populations are more 
easily compared than an entire table of age-specific mortality rates, which can 
overwhelm the intended audience. However, sometimes standardising mortality rates 
can mask important patterns in death rates, and therefore standardisation should not 
be viewed as a substitute for a careful examination of age-specific rates. 
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2.2 Rate denominators 
For the purposes of population-based statistics, the aggregate population is treated as 
‘person-time’ (usually expressed as person-years). Person-years can be defined as the 
sum of the number of years that each member of a population is at risk of dying (or 
developing a certain illness). The mid-year population is often used as an estimate of 
person-years. There are limitations to this approach. It assumes that the mid-year 
population is a good estimate; there can be instances when this is not the case. An 
example would be when you have a population that has seasonal fluctuations in 
numbers e.g. a tourist resort town. At mid-year, the population may be much lower 
than at other times of the year, and the use of the mid-year population as a 
denominator may not be appropriate. For population-based statistics, there needs to be 
careful consideration of what population denominator is the best choice. The 
Australian Bureau of Statistics provides the estimated resident population for each 
year for each of the States and Territories. This breaks the population down by age, sex 
and geographical location. More detailed breakdown of the population (e.g. income, 
Indigenous status, country of birth) is usually only provided for census years. This can 
constrain analyses—for example, if you want to look at trends over time for a health 
measure by Indigenous status, you may not be able to easily derive the population 
denominators you need.  
There may be instances where the choice of population denominator is not 
straightforward. For example, population denominators based on the usual place of 
residence may not be the right choice if you are looking at mortality among the 
homeless, or if the population of interest were migratory, especially if movement is 
related to the phenomena being studied (e.g. elderly people moving from the country 
to the city to be closer to medical treatment). 

2.3 Why age-standardise mortality rates? 
Analysis of cohort data typically involves comparing the mortality rates observed in 
the study group with the rates for the general population. A common application of 
adjustment to remove confounding is the age adjustment of mortality rates. This 
permits comparison of mortality risk for various groups free from the distortion 
introduced by one group having a different age distribution than another.1  
Directly and indirectly standardised mortality rates are two basic methods commonly 
used. The corresponding comparative measures are known as the age-standardised 
rate ratio or comparative mortality figure (CMF) and the standardised mortality ratio 
(SMR). Any method of standardisation carries the risk of oversimplification and 
important information may be lost through use of these approaches to data analysis. A 
single combined measure (CMF or SMR) may obscure what is going on in each age 
group. The researcher should always compare age-specific rates to see whether the 
contrasts between study populations vary greatly with age. If the age-specific deaths 
rates do not have a consistent relationship in the study populations being compared, 
standardisation should be avoided as it will not indicate that these differences exist, 
instead it tends to mask the differences.2 
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2.4 Direct standardisation 
Obtained by applying the age-specific study population rates to the age distribution of 
the standard population. Comparison of directly standardised rates between different 
groups is intended to eliminate the differences that are observed in the crude rates 
solely by virtue of one group having a different age structure (or a different 
distribution of some other variable, such as sex or remoteness) from another.3  

2.4.1 Choice of standard population 
It is important to note that in order to compare two age-standardised rates, the same 
standard population must be used. The age-standardised rates should be viewed as 
relative indexes rather than actual measures of risk. Other uses of age-standardised 
rates such as comparing results to studies that used a different standard population for 
age-standardisation are invalid. 
There are two basic types of standard populations, internal or external. Internal 
standards are the total pooled population of the study groups to be compared. Internal 
standards are commonly used, but a limitation is that rates standardised to a specific 
study population are not as readily compared to age-standardised rates from other 
studies. 
External standards are standard populations drawn from sources outside the analysis. 
Choice of an external standard is arbitrary, depending on the purposes of the study, 
but conventions apply. For studies that have an international focus, a standard 
population that is commonly used is 2000 World Standard Population.4 In Australia, 
the convention followed by the AIHW and the Australian Bureau of Statistics (ABS) 
publications is to use the most recent census for a year ending in one as the standard 
population. That is, undertake age-standardisation using 2001 Census data until data 
become available from the 2011 Census. An advantage of choosing a commonly used 
standard population is that it allows comparisons of age-standardised rates with other 
published studies. 
The general consensus of the scientific literature is that selection of the standard 
population should not affect relative comparisons, although it will affect the absolute 
values of the standardised rates.5 Ideally the standard population selected should 
reflect a distribution not greatly different from that of the populations being studied.5 If 
the age-specific rates in the study populations have a roughly consistent relationship, 
the choice of standard population should not substantially affect comparisons, but if 
the age-specific rates are not consistent, comparisons will depend on the standard 
population selected.5 When the study populations are small, it can be difficult to decide 
whether there is a consistent relationship in age-specific rates, due to the large random 
variation associated with small numbers.  
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2.4.2 Directly standardised rate 
The directly standardised rate for a study population is written as the weighted 
average of the age-specific rates. Age groups are most often specified as five-year 
bands (e.g. 0–4 years, 5–9 years) up to some limit (e.g. 80–84 years, 85 years and older). 

 

∑= isi r wDSR         (1) 

 

=ir age-specific mortality rates for each age band in the cohort group = 
i

i

P
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number of deaths in an age interval, divided by the mid-year population in the age-
interval). Usually expressed as per 1,000 or 100,000 population. 
 

∑
=

si

si
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P
w  (standard population in each of the age bands, divided by the total 

standard population). 
 
The width of the age bands and the starting age for the oldest age group are often 
constrained by the data available. For example, estimates for a population might be 
available only in 10 year bands to 60 years and older, or in single year bands to 100 
years and older. In many circumstances, case data would be very sparse if divided into 
single year age groups. Five-year age groups are often used. With the ageing of the 
Australian population, the number of people (and cases of many conditions) at older 
ages has increased, and it is becoming common to use ’95 years and older’ as the oldest 
group in place of ’75 years and older’ or ’85 years and older’. Small denominator values 
can introduce instability into directly standardised rates and rate ratios (Section 2.5) 
and this should be considered when choosing an age band width and an oldest age 
group.  
It is most common to apply adjustment to data for all ages, but the same methods can 
be used to adjust a narrower age range. This may be useful where age structure within 
the age range of interest differs between groups for which rates are to be compared, 
and rates of the condition of interest vary with age. These conditions apply, for 
example, to trends in mortality due to falls by older people in Australia. Directly age-
standardised rates for, say, ages ’65 years and older’ can be calculated using as weights 

)(w si the age group specific proportions of the part of a standard population aged ’65 
years and older’. 
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Table 2.1: Mortality from all causes of injury for two fictitious towns 

 Alton Newton 

Age 

(yrs) 

Deaths 

Di  

Person-years 

Pi 

 

ri (x1,000) 

Deaths 

Di 

Person-years 

Pi  

 

rI (x1,000) 

0–24 3 1,542 1.9 6 1,831 3.3 

25–59 351 43,522 8.1 468 48,902 9.6 

60+ 532 30,265 17.6 52 2,889 18.0 

Total 886 75,329 11.8 526 53,622 9.8 

 Standard population (All State)    

Age (yrs)  Deaths  

(Dsi) 

Person-years 

(Psi) 

 

rsi (x1,000) 

 

wsi 

 

wi
2 

 

0–24 1,142 176,131 6.5 0.046 0.002  

25–59 25,799 3,021,675 8.5 0.787 0.619  

60+ 11,519 641,842 17.9 0.167 0.028  

Total 38,460 ∑ )P( si 3,839,648 (rs) 10.0 1.000 0.649  

 
Crude death rate in Alton = 11.8 per 1,000 
Crude death rate in Newton = 9.8 per 1,000 
 
Directly age-standardised rates: 
Alton = [(1.9)0.046 +(8.1)0.787 + (17.6)0.167] = 9.4 per 1,000 
Newton = [(3.3)0.046 + (9.6)0.787 + (18.0)0.167] = 10.7 per 1,000 
 
The overall crude death rate is higher in Alton even though Newton has higher 
mortality rates for each age group (Table 2.1). Why is this so? Older age is the major 
contributor to all external causes of injury mortality. Alton has an older age structure 
than Newton, and therefore its overall mortality is heavily weighted by high rates in 
the oldest age group. The population of the whole State is used as a standard to adjust 
for differences in age composition between the two towns. The result is that when 
adjusting for age, Newton has a higher injury mortality rate compared to Alton (the 
opposite pattern to the crude rates). 
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2.4.3 Standard error 
Rates calculated from groups of limited size may be based on a relatively small number 
of cases. A weakness of direct standardisation is that the a-priori weights wi take no 
account of the precision with which component rates are estimated. The data for a 
single age interval may make a major contribution to the standard error if the 
corresponding rate is based on a small denominator yet might be given a large weight.3 

The standard error is therefore useful as a measure of the statistical precision with 
which the rate is determined.  
The calculation of the standard error (the square root of the variance) of the age-
standardised rate is shown below. 3, 5 
 

∑= ) var(rVar(DSR) i
2
siw        (2) 
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Using the example in Table 2.1, the variances for the age-standardised rates are:  
 
Alton = [(1.92/3)0.002 +(8.12/351)0.619 + (17.62/532)0.028] = 0.134 
Newton = [(3.32/6)0.002 +(9.62/468)0.619 + (18.02/52)0.028] = 0.299 
 
The standard errors for the age-standardised rates are:  

367.00.134Alton ==  

548.00.299Newton ==  
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2.4.4 Comparative Mortality Figure (CMF) 
The Comparative Mortality Figure (CMF) is a summary measure of the incidence or 
mortality rate ratios between the study and standard population that accounts for 
possible confounders such as age.3  
The simplest way to view this measure is as a rate ratio of two directly standardised 
rates (which have been derived using the same standard population).3  
For example, the rate ratio of the directly standardised rates for Newton and Alton is 
10.7/9.4 = 1.14.  
The formula for the CMF is more complicated, but is included to further clarify the 
logic behind this measure:6 
 

)population standard(in  deaths Observed
)population standard(in  deaths Expected

P
D

P

P
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  CMF
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i
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[ ]19/641842)641842(1155)799/3021673021675(252/176131)176131(114
/30265)641842(5321/43522)3021675(35542)176131(3/1  CMFAlton 
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++
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[ ]

[ ]19/641842)641842(1155)799/3021673021675(252/176131)176131(114
2889)641842(52/8/48902)3021675(46831)176131(6/1  CMFNewton 

++
++

=

 
For Alton, the CMF is 0.94 
For Newton, the CMF is 1.07  
 
The ratio of CMFs for Newton and Alton is 1.07/0.94 = 1.14 (the same result can be 
achieved by simply calculating the rate ratio of the two town’s directly age-
standardised rates). 
The CMF can be expressed as the ratio of the mortality rate that would be expected for 
the whole State (for example) if it had the mortality experience of the study population, 
and the mortality rate that the whole State actually has. The CMF is often multiplied by 
100 for expression as a percentage. A CMF of over 1.0 (or over 100%, depending on 
whether it is converted to a percentage) represents an unfavourable mortality 
experience.6 



16 A guide to statistical methods for injury surveillance 

2.4.5 Standard error 
The standard error of the CMF is: 
 

∑

∑ ⎟
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( )
38460

)(532/30265641842)(351/435223021675)1542/3(176131
SE(CMF)Alton 

222222 ++
=

 

( )
38460

)(52/2889641842)(468/489023021675)1831/6(176131
 SE(CMF)Newton 

222222 ++
=

 
Using the example in Table 2.1, the SE(CMF) for Alton is 0.052 and for Newton is 0.083. 
Because of the skewed distribution of the CMF it is necessary to transform it to the log 
scale. The approximate standard error for the transformed CMF is: 
 

CMF
SE(CMF)SE(logCMF) =        (7) 

 
The log transformed standard error is 0.055 for Alton and 0.077 for Newton. 
 
Methods for calculating confidence intervals for the DSR and the CMF are outlined in 
Section 2.9. 
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2.5 Direct standardisation and small numbers  

2.5.1 Stability of the CMF 
A major disadvantage of the CMF is its instability when the component rates are based 
on small numbers of deaths. This problem is illustrated using a hypothetical example 
below:3 

Table 2.2: Fictitious data used to illustrate the instability of the CMF 

 Cohort Standard population 

Age stratum (yrs) Deaths Person-years Deaths Person-years 

45–64 10 10,000 140 150,000 

65–84 9 3,000 290 70,000 

85+ 1 1 30 210 

Totals 20 13,001 460 220,210 

Table 2.9 in Breslow and Day, p73.3 

The cohort CMF is: 

 

24.1
460

)1/1(210)000,3/9(000,70)000,10/10(000,150
=

++
 

 
However, if the single member in the 85+ age group were to survive instead of die, the 
same calculation gives 

 

78.0
460

)1/0(210)000,3/9(000,70)000,10/10(000,150
=

++
 

 
Thus, a change in only one death has made a large difference in the comparative 
analysis.  
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2.5.2 Modelling the stability of the CMF 
The precision of the CMF can be explored by modelling curves of various combinations 
of the numerator and denominator for the 85+ age stratum. Figure 2.1 depicts the 
curves which result from increasing the denominator and numerator for the 85+ age 
group in a step-wise manner to see what size of a denominator achieves only a minor 
change in the CMF. In Figure 2.1, case numbers range from 0–5 and the denominator 
ranges from 0–75. When the case number in the 85+ age group is 1 and the 
denominator is 1 (as outlined in the worked example) the CMF is 1.24, whereas if the 
case number is 0, the CMF is 0.78. However, the CMF becomes more stable when the 
denominator increases to around 25. As case numbers increase in the 85+ age group, 
the denominator needs to be larger for the CMF to attain little change compared to 
when there are 0 cases in the 85+ age group. The choice of cut-off is arbitrary and 
depends on what degree of statistical precision the researcher would like for the CMF, 
but a rule of thumb—when the denominator is around 30 or greater in each age group, 
the CMF is fairly stable. 
 

 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Denominator

C
M

F

CMF w hen there is 0 cases for 85+ yrs
CMF w hen there is 1 case for 85+ yrs
CMF w hen there is 2 cases for 85+ yrs
CMF w hen there is 3 cases for 85+ yrs
CMF w hen there is 4 cases for 85+ yrs
CMF w hen there is 5 cases for 85+ yrs

 
 Figure 2.1: Size of denominator needed to reduce instability when the numbers in an age-

stratum are small when using direct standardisation 

 



 

A guide to statistical methods for injury surveillance 19 

2.5.3 Instability when numbers are small 
The precision of the CMF is defined by the variance of the age-standardised rate. As 
the denominator increases, the variance of the age-standardised rate decreases. 
Although an increase in the numerator will elevate the variance of the age-
standardised rate, the denominator is more important for the stability of the CMF [see 
equation (4)]. 
For most common causes of mortality (e.g. cancer, coronary vascular disease) the 
numerator and denominator in each age-specific stratum will be large enough so that 
there is no reason to suspect instability in the CMF when using direct standardisation. 
For rare causes of mortality (e.g. lymphomas, spinal cord injuries) the numerator may 
be small (only several cases may occur in an age-specific stratum), but the denominator 
will be large enough for the CMF to be stable. The stability of the CMF is likely to be a 
problem in the following instances: 
 
1. When age-strata are small because of a decline in population numbers  

(e.g. 85+ years). 
2. When age-strata are stratified (e.g. gender, Indigenous status, remoteness zone) 

leading to small numbers. 
3. When the cause of mortality is common in a small age-strata (i.e. the numerator is 

large relative to the denominator). Although it is not shown in Figure 2.1, the CMF 
will be unstable when there are 10 cases for a denominator of 30. 

 
For injury mortality, the first two instances may occur, but the third is unlikely to be a 
consideration as injury mortality is usually a rare occurrence, and unlikely to be a 
major cause of death in any particular age-strata. 
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2.5.4 Strategies to reduce instability 
The following strategies are suggested for data in which there are small numbers in an 
age-stratum. Look at age-strata and use the principles of numerator/denominator 
combinations in Figure 2.1 as a guide to determine which age-strata may be unstable 
for direct standardisation. Then there are the following options: 
 

1. Combine age-strata that are small due to a decline in population numbers (e.g. if 
there were less than 30 people in an 85+ age-stratum, you might collapse the 
category down to 80+ years or 75+ years etc). 

2. When stratification by other variables (in addition to age stratification) results in 
small denominators for any one stratum, you might consider collapsing categories 
to increase the numbers within (e.g. combining the remote and very remote 
zones).  

3. Use indirect standardisation to obtain the standardised mortality ratio (SMR) for 
the strata of interest and compare against the CMF to see whether there are any 
discrepancies which might suggest that using direct standardisation is 
problematic. If the findings are dissimilar for the SMR and CMF then it is best to 
look more closely at the underlying strata to see if the bias lies in the SMR or CMR 
(see Section 2.7).3 

4. If a preliminary examination of the case numbers and denominators in the age-
strata leads you to think that using direct standardisation will be problematic, 
then use indirect standardisation instead. 
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2.6 Indirect standardisation 

2.6.1 Indirectly standardised rate 
Indirect standardisation is less commonly used than direct standardisation, but has 
been purported as being useful when age-specific numbers of deaths for the cohort are 
unavailable. 5 However, the situations in which the age and sex of those to whom an 
event occurs (such as death or hospitalisation) are not known, are rare, and most injury 
datasets are likely to contain information on age and sex.6 Indirect standardisation may 
be preferable under some circumstances, such as when age-specific denominators are 
small.5 Indirect standardisation applies the age-specific rates from the standard 
population to the age-distribution of the study population. The indirect method 
calculates how many deaths would be expected in each group if the age-specific rates 
of the standard population were applicable.5 
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=sr crude rate for the standard population. Usually expressed as per 1,000 or 100,000 
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=iP the population of each five-year age band in the study population. 

  
Using the example in Table 2.1, the indirectly age-standardised rates are: 
Alton = 886 x 1000 / [(6.5)1542 + (8.5)43522 + (17.9)30265] x 10.0 = 9.6 per 1,000 
Newton = 526 x 1000 / [(6.5)1831 + (8.5)48902 + (17.9)2889] x 10.0 = 11.0 per 1,000 
 
The indirect standardised rates are similar to those obtained by the direct method in 
Section 2.4.2. 
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2.6.2 Standardised Mortality Ratio (SMR) 
More frequently, the ratio of observed deaths to expected deaths is presented. This 
ratio is called the Standardised Mortality Ratio (SMR). If incidences are used instead of 
deaths, then the ratio is called the Standardised Incidence Ratio (SIR).  
 

∑
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This SMR (or SIR) is usually expressed as a percentage by multiplying by 100.  
Using the data in Table 2.1, the SMR for Alton (886/921.7) is 0.96 and for Newton 
(526/479.3) is 1.10. The ratio of the SMRs (1.10/0.96) gives 1.14, the same as the ratio of 
the CMFs obtained in Section 2.4.4. 
A comparison of the formulae [equation (5) and (9)] for the SMR and CMF reveal two 
differences. Firstly, the CMF is the quotient of expected over observed deaths with 
reference to the standard population, whereas the SMR is the quotient of observed over 
expected deaths with reference to the study population.6 This makes no difference to 
their interpretation—if both the study and standard population had the same 
distribution, then the CMF and SMR would give identical results. 6 Secondly, the age 
and sex sub-group weights used in the denominator of the SMR depend on the 
characteristics of the study population, whereas those used in the denominator of the 
CMF do not.6 If the SMRs for several study populations are compared, the weights 
used to create the weighted sum of sub-group specific mortality rates will differ, and 
therefore the relative importance assigned to deaths in different sub-groups will differ 
between study populations. 6 This means the SMRs are not standardised with each 
other, although these use the same ‘standard’ population to provide their expected 
rates. This means that two study populations can only be compared via their SMRs if 
they have identical population structures (which is highly unlikely). In contrast, the 
CMFs from several study populations will have the same denominator - the observed 
number of deaths from the standard population, allowing direct comparisons of their 
CMFs.6 
One advantage of the SMR over the CMF is that age-specific numbers of deaths are not 
required for its calculation. It suffices to know only the total number of deaths in the 
study population.3 This can be useful for published data, where details on the numbers 
of death by cause, subgroup and age may be left out preventing the application of the 
CMF.3 However, in most cases this data is available. 
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2.6.3 Standard error 
The variance of the SMR is: 
 

Var(SMR)
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Using the example in Table 2.1, the Var(SMR) for Alton 2)7.921(886 is 0.001 and for 
Newton 2)3.479(526 is 0.002. 

 
The standard error of the SMR is: 
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Using the example in Table 2.1, the SE(SMR) for Alton )7.921886( is 0.032 and for 

Newton )3.479526( is 0.048. 

 
As with the CMF, it is usual practice to use the log transformed SMR to account for its 
skewed distribution. The approximate standard error for the transformed SMR is: 
 

Observed
1

SMR
SE(SMR)SE(logSMR) ==      (12) 

 
The log transformed standard error is 0.034 for Alton and 0.044 for Newton. The SMR 
tends to have a smaller standard error than the CMF (see Section 2.4.5) as it is the 
maximum likelihood estimate.7 
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2.7 Indirect standardisation and small 
numbers 

2.7.1 Stability of the SMR 
The SMR is a weighted average of the ratios of age-specific rates for the cohort and 
standard population.3  

From the hypothetical example in Table 2.2, the expected number of deaths for the 
cohort is determined as follows:3 
 

90.21)210/30(1)000,70/290(000,3)000,150/140(000,10 =++  

 

91.0
90.21

20SMR The ==  

 
This indicates a slightly lower death rate among the cohort members as opposed to the 
general population. However, if the single member in the 85+ age group were to 
survive instead of die: 
 

87.0
90.21

19SMR The ==  

 
This is only relatively minor change compared to that observed earlier with the CMF in 
Section 2.5.1.3 The SMR tends to be less sensitive to numerical instabilities in one or 
two of the age-specific rates.3 

2.7.2 Limitations of the SMR 
The standard error of the SMR depends only on fluctuations in the total number rather 
than in the age-specific number of deaths, therefore it is generally smaller than the 
CMF. 3 The SMR weights the ratios optimally, in inverse proportion to their statistical 
precision, whereas the weights associated with unstable ratios may be much larger 
with the CMF. 3 This means the SMR is more appropriate when the study population 
size is small. However, there are also statistical disadvantages to using the SMR. 
Indirect standardisation is sometimes incorrectly used to compare the mortality 
experience of different study populations. The SMRs from study populations can only 
be legitimately compared with the standard (e.g. 1.00 or 100) and not with each other 
because different weighting is used to generate each SMR (the weights depend on the 
age distribution of the study population). This inability to compare the mortality 
experience of study populations is the major disadvantage of using indirect 
standardisation, and provides the motivation for using direct standardisation, which is 
not limited by this constraint. 
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A problem with indirect standardisation is that the ratio of two SMRs determined by 
pooling observed and expected deaths across age groups may sometimes lie 
completely outside the range of the age-specific rate ratios, as shown in Table 2.3 
below.3 

Table 2.3: Example of misleading ratios of SMRs 

 Age range (years) 

Cohort 20–44 45–64 Total (20–64) 

 Deaths no. 100 1,600 1,700 

I Expected no. 200 800 1,000 

 SMR1 (%) 50 200 170 

     

 Deaths no. 80 180 260 

II Expected no. 120 60 180 

 SMR2 (%) 67 300 144 

     

 SMR1/SMR2 75 67 118 

Table 2.13 in Breslow and Day, p73.3 

The overall SMR for each cohort is the weighted average of the two age-specific 
observed/expected deaths ratio, the weights being proportional to the expected 
number of deaths. Since Cohort I has more older people, the high observed/expected 
deaths ratio for the 45–64 year age interval is weighted more heavily (the overall SMR 
is 170%), whereas in Cohort II much more emphasis is given to the lower 
observed/expected deaths ratio in the 25–44 year age interval (the SMR is lower, 
144%). The overall result is a change in sign in the apparent effect, from excess deaths 
in Cohort II (compared to Cohort 1) on an age-specific basis to an apparent excess in 
Cohort I when the data are pooled.3 The CMF is not subject to this problem as the ratio 
of two CMFs are the ratio of directly standardised rates (which are the weighted 
average of the age-specific rate ratios). However, in practice, the CMF and SMR usually 
provide numerical results that are similar. In cases in which they differ, it is not 
necessarily true that the CMF is more nearly ‘correct’.3 It is important to determine 
whether the bias is due to extreme sensitivity to small numbers for the CMF (especially 
in stratum-specific denominators) or whether the bias lies in the SMR, by looking more 
closely at the underlying strata. 
There are three conditions under which the SMR and CMF give substantially different 
results. The first is when there are non-negligible differences in the age distributions of 
the study group(s) and the standard population. Indirect standardisation produces 
biased results in this situation, due to residual confounding by age, but direct 
standardisation is not affected. The second is when the ratio of mortality rates of the 
study group(s) compared to the standard population vary substantially with age. The 
third is when both of these factors occur together.3  
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2.8 Calculating confidence intervals 
Confidence intervals can be calculated by statistical programs such as Stata or in 
spreadsheets that are constructed in programs such as Microsoft Excel. Using these 
resources is time-saving and reduces the chance of errors by calculations done by hand. 
It is beyond the purposes of this report to explain in detail how to perform analyses 
that produce CIs using statistical software programs, however some of the methods are 
briefly outlined below. In Stata, crude rates and their confidence intervals can be 
calculated by exponentiating coefficients using Poisson regression (or alternatively, 
Negative Binomial Distribution regression) as demonstrated in Sections 3.8 and 3.9.  
To input a dataset into Stata, variable names must not be hyphenated or greater than 
one word (i.e. person-years is input as personyears, age group is input as agegroup) 
and categories are defined by numbering (e.g. 1=0–29 years, 2=30–59 years, 3=60+ 
years). 
Methods for calculating CIs will be demonstrated using mortality data from Rothman 
referring to the total deaths and populations in Sweden and Panama in 1962.8  
 
. input nation agegroup deaths population 
 1. 1 1 3523 3145000 
 2. 1 2 10928 3057000 
 3. 1 3 59104 1294000 
 4. 2 1 3904 741000 
 5. 2 2 1421 275000 
 6. 2 3 2456 59000 
 7. end 
. label define nation 1 “Sweden” 2 “Panama” 
. label val nation nation 
. label define agegroup 1 “0-29 yrs” 2 “30-59 yrs” 3 “60+ yrs” 
. label val agegroup agegroup 
. list, nolabel 
[the ‘list’ command can be used to view a tabulation of the dataset] 
 
Nation 
1=Sweden, 2=Panama 

Age group
1=0–29 yrs, 2=30–59 yrs, 3=60+ yrs Deaths Population 

1 1 3,523 3,145,000 

1 2 10,928 3,057,000 

1 3 59,104 1,294,000 

2 1 3,904 741,000 

2 2 1,421 275,000 

2 3 2,456 59,000 
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Using this dataset, the ‘tabrate’ or the ‘ci’ command provide exact Poisson CIs for 
crude rates. As an aside, some commands in Stata may be updates or user-written 
additions that need to be downloaded in Stata. By using the ‘findit’ command (e.g. 
‘findit tabrate’), Stata searches for information on a topic across all Stata-related 
internet sources including user-written additions. From ‘findit’, you can click to go to 
the source to install the additions.  
 
. tabrate deaths nation, e(population) 
 
WARNING: response deaths not coded 0/1 
 
table of cases (D), person-years (Y), and rates per 1000 person-years 
 
  +-----------------------------------------------------+ 
  | nation      _D        _Y   _rate   ci_low   ci_high | 
  |-----------------------------------------------------| 
  | Sweden   73555   7.5e+06   9.813    9.742     9.884 | 
  | Panama    7781   1.1e+06   7.238    7.079     7.401 | 
  +-----------------------------------------------------+ 
 
Chisq test for unequal rates =   656.62 (1 df, p =  0.000 ) 

  
For Sweden, the crude rate is 9.8 deaths [95% CI: 9.7 to 9.9] per 1,000, whereas for 
Panama it is 7.2 deaths [95% CI: 7.1 to 7.4] per 1,000.  
The ‘ci’ command (see ‘help ci’ in Stata) can also be used to calculate CIs for crude rates 
based on the Poisson distribution. 
 
. bysort nation: ci deaths, exposure(population) 
 
------------------------------------------------------------------------------ 
-> nation = Sweden 
 
                                                         -- Poisson  Exact -- 
    Variable |   Exposure        Mean    Std. Err.       [95% Conf. Interval] 
-------------+--------------------------------------------------------------- 
      deaths |    7496000    .0098126    .0000362        .0097418    .0098837 
 
------------------------------------------------------------------------------
-> nation = Panama 
 
                                                         -- Poisson  Exact -- 
    Variable |   Exposure        Mean    Std. Err.       [95% Conf. Interval] 
-------------+--------------------------------------------------------------- 
      deaths |    1075000    .0072381    .0000821        .0070782    .0074008 
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An immediate form of the command ‘cii’ is available which can be used in calculator 
mode, with numbers for ‘exposure’ and ‘events’ instead of requiring a datafile of 
variables. For example, for Panama there are 7,781 deaths among 1,075,000 persons and 
the command is: 
 
. cii 1075000 7781 
 
 
                                                         -- Binomial Exact -- 
    Variable |        Obs        Mean    Std. Err.       [95% Conf. Interval] 
-------------+--------------------------------------------------------------- 
             |    1075000    .0072381    .0000818        .0070788    .0074002 
 

 
The ‘ci’ and ‘tabmore’ command have the added function of being able to provide age-
specific rates and their CIs.  
 
. quietly bysort nation agegroup: ci deaths, exposure(population) 
[quietly suppresses screen output so results are not shown] 
. db tabmore 
. tabmore, res(deaths) typ(count) row(nation) rate col(agegroup) fup(population) ci 
 
Response variable is: deaths which is count 
Follow-up time variable is: pop 
Row variable is: nation  
Column variable is: agegroup  
Number of records used:    6 
95% confidence intervals 
 
Summary using rates per 1000 
 
---------------------------------------- 
          |            nation            
 agegroup |        Sweden         Panama 
----------+----------------------------- 
 0-29 yrs |          1.12           5.27 
          |   1.08 - 1.16    5.11 - 5.44 
          |  
30-59 yrs |          3.57           5.17 
          |   3.51 - 3.64    4.91 - 5.44 
          |  
  60+ yrs |         45.68          41.63 
          | 45.31 - 46.05  40.01 - 43.31 
---------------------------------------- 
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Age-standardised rates and their CIs can be calculated using the ‘dstdize’ and ‘istdize’ 
command for direct and indirect standardisation, respectively. 
To demonstrate direct standardisation, using the Rothman data for Sweden and 
Panama, first choose a standard population to use, a file called ‘1962.dta’. 
 

Age group 
1=0–29 yrs, 2=30–59 yrs, 3=60+ yrs Population 

1 0.35 

2 0.35 

3 0.30 

 
The directly age-standardised rates and their CIs are calculated for the mortality data 
for Sweden (1) and Panama (2) using the ‘dstdize’ command: 
. dstdize deaths population agegroup, by(nation) using(1962) 
 
---------------------------------------------------------- 
-> nation= 1  
                         -----Unadjusted-----  Std. 
                                Pop.  Stratum  Pop.   
  Stratum       Pop.     Cases  Dist. Rate[s] Dst[P]  s*P 
---------------------------------------------------------- 
 0-29 yrs    3145000      3523  0.420 0.0011  0.350 0.0004 
 30-59 yr    3057000     10928  0.408 0.0036  0.350 0.0013 
  60+ yrs    1294000     59104  0.173 0.0457  0.300 0.0137 
---------------------------------------------------------- 
Totals:      7496000     73555    Adjusted Cases: 115032.5 
                                      Crude Rate:   0.0098 
                                   Adjusted Rate:   0.0153 
                       95% Conf. Interval: [0.0152, 0.0155] 
 
---------------------------------------------------------- 
-> nation= 2  
                         -----Unadjusted-----  Std. 
                                Pop.  Stratum  Pop.   
  Stratum       Pop.     Cases  Dist. Rate[s] Dst[P]  s*P 
---------------------------------------------------------- 
 0-29 yrs     741000      3904  0.689 0.0053  0.350 0.0018 
 30-59 yr     275000      1421  0.256 0.0052  0.350 0.0018 
  60+ yrs      59000      2456  0.055 0.0416  0.300 0.0125 
---------------------------------------------------------- 
Totals:      1075000      7781    Adjusted Cases:  17351.2 
                                      Crude Rate:   0.0072 
                                   Adjusted Rate:   0.0161 
                       95% Conf. Interval: [0.0156, 0.0166] 
 
Summary of Study Populations: 
   nation             N      Crude     Adj_Rate       Confidence Interval 
 -------------------------------------------------------------------------- 
        1       7496000   0.009813     0.015346    [  0.015235,    0.015457] 
        2       1075000   0.007238     0.016141    [  0.015645,    0.016637] 
---------------------------------------------------------- 

 
For Sweden, the directly age-adjusted rate is 15.3 deaths [95% CI: 15.2 to 15.5] per 
1,000, whereas for Panama it is 16.1 deaths [95% CI: 15.6 to 16.6] per 1,000.  
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In the following section, equations are presented to aid the reader in constructing or 
using spreadsheets in programs such as Microsoft Excel or performing calculations by 
hand. 
The Poisson distribution is asymmetrical with zero as its lower bound. If the numbers 
of deaths are large then normal approximations can be used to calculate confidence 
intervals, but care has to be exercised when both the rates are low and the numbers of 
deaths are small. If a normal approximation is assumed, the resulting CIs can result in 
the lower limit being less than zero, and death rates cannot be negative. There are a 
number of known methods of confidence interval estimation; some perform better than 
others in the case of small numbers.9  A method in which the approximation of 
confidence intervals is based on the gamma distribution has been shown to outperform 
existing methods (including a method proposed by Dobson et al 9) when case numbers 
are small and when there is large variability in the weights applied to strata in age-
standardisation.10 Anderson et al5 demonstrates how the gamma distribution method10 
can be used to generate a set of confidence factors (see Appendix I) to apply to crude 
and age-specific rates and age-adjusted rates (direct and indirect) to calculate 95% CIs 
for Poisson distributed observations when case numbers are small (1–99 deaths). When 
the number of observations is greater (around 100 cases or above) a normal 
distribution is approximated and near symmetry is achieved. 5 Therefore, when 
constructing CIs, a normal approximation can be applied above this threshold to 
simplify calculations. If the standard error of the SMR or the CMF is to be used to 
construct CIs, it is necessary to make a transformation to the log scale.3  

2.8.1 Crude rates and age-specific rates 
For crude rates and age-specific rates (1–99 deaths)—see Appendix 1: 

deaths observedfor factor  confidence x Upper Rate :LimitUpper 
 deaths observedfor factor  confidenceLower  x Rate:limitLower 

  (13)  

 
When the number of cases is 100 or more, the normal approximation may be used to 
calculate the CIs. 
 
For crude rates and age-specific rates (100 or more deaths) — see Appendix 1: 

Deaths
Rate1.96DSR :limitUpper 

Deaths
Rate1.96Rate :limitLower 

+

−
      (14) 
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2.9 Confidence intervals for direct 
standardisation 

2.9.1 Directly age-standardised rate 
For the directly age-standardised rate (1–99 deaths)—see Appendix 1: 

deaths observedfor factor  confidence x Upper DSR :LimitUpper 
 deaths observedfor factor  confidenceLower  x DSR:limitLower 

  (15)  

 
For a normal approximation (100 or more deaths), 95% CIs can be formed for age-
standardised rates using the variances. 
 
For the directly standardised rate (100 or more deaths): 

)var(r1.96DSR :limitUpper 

)var(r1.96DSR :limitLower 

i

i

+

−
      (16)  

 
Using the example in Section 2.6 the CIs are: 

Alton  = DSR ± 717.0134.096.1 =  

 = 9.4 per 1,000 (95% CI: 8.7 to 10.1) 

Newton = DSR ± 072.1299.096.1 =  

 = 10.7 per 1,000 (95% CI: 9.6 to 11.8) 

2.9.2 Comparative Mortality Figure 
From equations (6) and (7), the log transformed 95% CIs are given by: 
 

⎥⎦
⎤

⎢⎣
⎡ ⋅

CMF
SE(CMF)1.96 exp

CMF :limitLower       (17) 

 

⎥⎦
⎤

⎢⎣
⎡ ⋅

⋅
CMF
SE(CMF)1.96expCMF :limitUpper  

 
Using the example in Section 2.4: 
For Alton, the CMF is 0.94 (95% CI: 0.84 to 1.04) 
For Newton, the CMF is 1.07 (95% CI: 0.92 to 1.24) 
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2.10 Confidence intervals for indirect 
standardisation 

 
For the SMR (1–99 expected deaths)—see Appendix 1: 

deaths observedfor factor  confidence x Upper SMR :LimitUpper 
 deaths observedfor factor  confidenceLower  x SMR:limitLower 
 (18)  

 
Indirectly standardised rates and CIs can be generated by multiplying the SMR and its 
CIs by the crude rate for the standard population (here it is 10.0).  
 
For the SMR (100 or more deaths): 
To account for the skewed distribution of the SMR, the log transformed 95% CIs from 
equation (12) are given by: 
 

⎥
⎦

⎤
⎢
⎣

⎡
Observed

1.96exp

SMR :limitLower       (19) 

 

⎥
⎦

⎤
⎢
⎣

⎡
⋅

Observed
1.96expSMR :limitUpper  

 
For Alton, the SMR is 0.96 (95% CI: 0.90 to 1.02) 
For Newton, the SMR is 1.09 (95% CI: 1.00 to 1.19) 
 
Indirectly standardised rates and CIs can be generated by multiplying the SMR and its 
CIs by the crude rate for the standard population (here it is 10.0).  
 
Alton = 9.6 per 1,000 (9.0, 10.2) 
Newton = 10.9 per 1,000 (10.0, 11.9) 
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2.11 Conclusion 
Directly and indirectly standardised mortality rates are two basic methods commonly 
used to permit comparison of mortality risk for various groups free from the distortion 
introduced by one group having a different age distribution than another. The 
corresponding comparative measures are known as the age-standardised rate ratio or 
comparative mortality figure (CMF) and the standardised mortality ratio (SMR). This 
section has discussed the rationale for choosing an appropriate method of age-
standardisation when case numbers are small. It has been shown that the size of the 
denominator of an age-stratum is an important factor for the stability of the CMF when 
using direct standardisation, and has more influence than the size of the numerator. In 
many instances, when the denominator is around 30 or above, direct standardisation is 
an acceptable method to use. A number of strategies are suggested for determining in 
which instances, direct standardisation can be used and when it is more appropriate to 
use indirect standardisation. 
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3 Measuring trend 

3.1 Tests for trend 
There are two situations commonly encountered by a researcher where they may want 
to measure trend. These are: 

• Trends over time e.g. mortality rates over a number of years, and 
• Trends or patterns over other naturally ordered characteristics such as age. 

 
When looking at graphs in many agency reports, trends over time in mortality rates are 
often determined by simply eyeballing the graph and making a statement such as 
‘there was an increase in mortality between 1990 and 2000 for males but not for 
females’. Simple graphs of annual rates can be informative and are a valid way of 
presenting data clearly. When there are marked trends over time or large differences 
between groups, this method is sufficient, but in some instances, it may not be clear-cut 
as to whether there is a trend over time or differences between groups. 
Some journal papers and agency reports may use a formal test for trend, but often 
there is no discussion as to why a particular test for trend was chosen. There are many 
methods of test for trend in use—chi-squared statistics for trend, Pearson’s correlation, 
ordinary least squares regression, logistic regression, Poisson regression models and 
others. A researcher may find it difficult or confusing to decide on which test for trend 
is appropriate for their data, and whether any of the tests for trend used in the 
literature are based on the wrong assumptions and should be avoided. The researcher 
may also want to choose a test that measures the magnitude of difference between 
groups, or per cent change over time.  
One of the first considerations before embarking on any data analysis is deciding what 
type of data you are dealing with. A categorical (sometimes called a nominal variable) 
is one that has two or more categories, in which no ordering is implied (e.g. gender). If 
the variable has a clear ordering but the differences between categories may not be 
necessarily equal, then the variable is an ordinal variable (e.g. low, medium and high 
socioeconomic status). An interval variable is similar to an ordinal variable, except the 
values are evenly spaced (e.g. aged 0–4 years, 5–9 years, 10–14 years etc).1 
It is often useful to consider both ordinal and interval variables as ordered, and to 
distinguish between nominal and ordered data.1 In the following section, we will 
differentiate between chi-square tests that are sensitive to departures from the null 
hypothesis that could occur in various ways (e.g. unequal proportions between groups 
can occur in any combination) and tests that are suitable for testing for a certain form 
of departure from the null hypothesis (i.e. a trend).1 Trend is a simultaneous test for 
increasing or decreasing relationship between risk and exposure. 
The following section will use Stata statistical software for data manipulations.2  
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3.2 Chi-square statistics 
Chi-square is the name of a class of continuous probability distributions that can be 
used to test the assumption under the null hypothesis of the independence of row and 
column classifications in a 2 X k contingency table. Chi-square statistics can be used to 
determine if there is an association between variables for counts, rates and proportions. 
The tests described in the following section include: 
 

• Overall Pearson’s chi-square 
• Cochran-Armitage test for trend (chi-square test for trend and chi-square test 

for departure from linearity) 
• Mantel-Haenszel test for trend 

 

3.2.1 Trends for ordered data 
In this section, we will consider chi-square statistics suitable for 2 X k or k X 2 
contingency tables. That is, 2 rows by any number of columns, or 2 columns by any 
number of rows.  
Consider this fictitious data for the prevalence of a disease (a k X 2 contingency table). 
We will examine the relationship between the prevalence of the disease and age. Are 
the proportions of cases in each age group homogenous, or is there a trend? 
 
Age (years) Age group Cases Non-cases 

25–29 1 12 108 

30–34 2 24 156 

35–39 3 36 108 

40–44 4 60 120 

45–49 5 72 84 

50–54 6 60 36 

55–59 7 96 24 

60–64 8 108 12 
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A graph of the data shows what appears to be an increasing prevalence of cases by age. 
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 Figure 3.1: Prevalence of a disease, in chronological order 

 
In Stata,2 use the ‘ptrend’ command to give output of chi-square statistics. ‘ptrend’ 
calculates an overall chi-square (Pearson’s chi-square) and calculates a chi-square 
statistic for the trend (linear regression) of the proportion of cases on age (a variable 
called _prop is generated), and also gives a chi-square test for departure from the trend 
line. Both the chi-square test for trend and chi-square for departure are usually 
performed at the same time, and are sometimes loosely lumped together under the 
same name ‘Cochran-Armitage test for trend’.2 
 
. ptrend cases noncases agegroup 
 

Trend analysis for proportions 
Regression of p =  cases/(cases+non-cases) on agegroup: 
Slope =  .12173, std. error =  .00672, Z = 18.111 
 
Overall chi2(7) =       336.238,  pr>chi2 = 0.0000 
Chi2(1) for trend =     328.022,  pr>chi2 = 0.0000 
Chi2(6) for departure =   8.216,  pr>chi2 = 0.2227 
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The overall chi-square (Pearson’s chi-square) compares the observed and expected 
frequency counts. The null hypothesis of the Pearson’s chi-square is that the rows and 
columns in a two-way table are independent. A rough rule is that for the valid use of 
the Pearson’s chi-square test, relatively few expected frequency counts should be less 
than 5 (say 1 cell out of 5) and no expected frequency should be less than 1.1 The 
number in brackets is the degrees of freedom, here it is 7 or (row–1) x (column–1). 
The chi-square test for trend tests the null hypothesis that there is no association 
between the two variables being studied (i.e. the slope=0).  If the test is significant, we 
reject the null hypothesis (i.e. we conclude that the slope does not equal 0).  The sign of 
the slope coefficient indicates the direction of the trend: positive for an increasing trend 
and negative for a decreasing trend.  
The chi-square test for departure tests for ‘departures’ from linearity—it is simply a 
goodness-of-fit test for the linear model.3 A goodness-of-fit test compares the observed 
counts and those predicted by the model.4 If the model fits the data well, then the 
observed and expected counts should be close, the chi-square statistics will be small 
and the corresponding p-value will be large and non-significant. If the model is not a 
good fit, the chi-square statistic will be large and the p-value will be small (<0.05) and 
significant.4 
The chi-square test for trend has a reduced number of degrees of freedom (1 df) and is 
likely to be satisfactory, provided that only a small proportion of expected frequencies 
are less than about 2 and that these do not occur in adjacent rows.1 The chi-square test 
for departure is likely to be adequate if only a small proportion of the expected 
frequencies are less than about 5.1 Its degrees of freedom are (k – 2) or the number of 
rows – 2. 
In the example above, the conclusion is that age and the disease are associated. The 
proportion of cases present in each age group is not the same (chi-square test for 
difference in distributions, p<0.001) and the test for trend is significant (p<0.001). The 
chi-square for departure is not significant (chi-square test for trend, p=0.2227) so a 
linear model is a good fit for the data. The overall chi-square and the chi-square test for 
trend are both significant—but what are each of these are actually testing? What would 
we get if we used the same case numbers and mixed up the age groups, so we 
disguised the trend by age? 
 

Age (years) Age group Cases Non-cases 

25–29 6 12 108 

30–34 5 24 156 

35–39 2 36 108 

40–44 1 60 120 

45–49 8 72 84 

50–54 7 60 36 

55–59 4 96 24 

60–64 3 108 12 
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Looking at the graph, when the age groups are mixed up there is no longer a linear 
trend. 
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 Figure 3.2: Prevalence of a disease, not in chronological order 

 
In Stata, use the ‘ptrend’ command to give output of chi-square statistics. 
. ptrend cases noncases agegroup 
 

Trend analysis for proportions 
Regression of p = cases/(cases+non-cases) on agegroup: 
Slope = -.00081, std. error =  .00626, Z =   0.129 
 
Overall chi2(7) =       336.238,  pr>chi2 = 0.0000 
Chi2(1) for trend =       0.017,  pr>chi2 = 0.8970 
Chi2(6) for departure = 336.221,  pr>chi2 = 0.0000 

 
The overall chi-square analysis shows identical results to the previous example. So the 
overall chi-square test is simply testing whether the 11 proportions are the same (the 
null hypothesis) or different (the alternative hypothesis) and is not a test for trend (an 
increasing or decreasing proportion). The chi-square test for trend uses linear 
regression to correctly identify that there is no trend over time in incident cases of the 
disease (p=0.8970). The chi-square for departure is significant (p<0.001) so a linear 
trend is not a good model for the data. 
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This example highlights that it is inappropriate to use an overall chi-square (Pearson’s 
chi-square) to test for trend. The chi-square statistics tests for overall association 
between the rows and columns and assumes no ordering of either the rows or the 
columns. For dose-response or trend data, we need to use different statistics. The data 
is presented as a binary outcome (disease or no disease, case or no case) for which we 
have an ordered margin (which is the row or column depending how the data is set 
up). The chi-square test for trend can be used to identify trends over time when the 
data is ordered in this manner.  
 
Mantel-Haenszel test for trend 
The Mantel-Haenszel chi-square test for trend is very similar to the Cochran-Armitage 
test,5 and gives only slightly different test statistics.3, 5 Using the same fictitious data for 
the prevalence of a disease, the example below demonstrates that the Cochran-
Armitage test for trend gives comparable results to the Mantel-Haenszel chi-square test 
for trend.  
The Mantel-Haenszel chi-square test for trend can be calculated using the ‘tabodds’ 
command in Stata. The data needs to be entered in a different format to ptrend. 
 

Age (years) Age group Disease Observations 

25–29 1 0 108 

30–34 2 0 156 

35–39 3 0 108 

40–44 4 0 120 

45–49 5 0 84 

50–54 6 0 36 

55–59 7 0 24 

60–64 8 0 12 

25–29 1 1 12 

30–34 2 1 24 

35–39 3 1 36 

40–44 4 1 60 

45–49 5 1 72 

50–54 6 1 60 

55–59 7 1 96 

60–64 8 1 108 

. expand observations 
(1100 observations created) 
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. tabodds disease agegroup 
 
-------------------------------------------------------------------------- 
  agegroup  |      cases     controls       odds      [95% Conf. Interval] 
------------+------------------------------------------------------------- 
          1 |         12          108    0.11111        0.06120   0.20173 
          2 |         24          156    0.15385        0.10010   0.23644 
          3 |         36          108    0.33333        0.22859   0.48606 
          4 |         60          120    0.50000        0.36676   0.68164 
          5 |         72           84    0.85714        0.62567   1.17425 
          6 |         60           36    1.66667        1.10255   2.51940 
          7 |         96           24    4.00000        2.55741   6.25632 
          8 |        108           12    9.00000        4.95713  16.34011 
-------------------------------------------------------------------------- 
Test of homogeneity (equal odds): chi2(7)  =   335.94 
                                  Pr>chi2  =   0.0000 
 
Score test for trend of odds:     chi2(1)  =   327.73 
                                  Pr>chi2  =   0.0000 

 
The ‘or’ option specifies that odds ratios rather than odds be displayed. 
 
. tabodds disease agegroup, or 
 

--------------------------------------------------------------------------- 
    agegroup |  Odds Ratio       chi2       P>chi2     [95% Conf. Interval] 
-------------+------------------------------------------------------------- 
           1 |    1.000000          .           .              .          . 
           2 |    1.384615       0.76       0.3849      0.662430   2.894131 
           3 |    3.000000       9.86       0.0017      1.459309   6.167303 
           4 |    4.500000      21.42       0.0000      2.237492   9.050312 
           5 |    7.714286      41.72       0.0000      3.704492  16.064335 
           6 |   15.000000      65.84       0.0000      6.264706  35.915493 
           7 |   36.000000     118.29       0.0000     12.582646 102.999000 
           8 |   81.000000     152.96       0.0000     19.802094 331.328592 
--------------------------------------------------------------------------- 
Test of homogeneity (equal odds): chi2(7)  =   335.94 
                                  Pr>chi2  =   0.0000 
 
Score test for trend of odds:     chi2(1)  =   327.73 
                                  Pr>chi2  =   0.0000 

 
The test is on the log odds scale which means ‘tabodds’ reports whether there is a trend 
in the odds (or probability) of disease across exposure levels. Because the table is a 8 by 
2, the test for equality of the odds ratio is a chi-square with (row–1) x (column–1) 
degrees of freedom, with (8–1) x (2–1) or 7 degrees of freedom. Because the test for 
homogeneity of the odds is significant at p<0.001, there is indication that there is a 
difference among the exposure levels. The score test for trend indicates that there is a 
dose-response relationship. It has 1 degree of freedom because it is testing the slope of 
a regression line. Both the test of homogeneity chi-square (335.94) and the score test for 
trend of the odds (327.73) give very similar test statistics to the Pearson’s chi-square 
(336.238) and chi-square test for trend (328.022) using the Cochran-Armitage test for 
trend (‘ptrend’ command) at the beginning of Section 3.1.1.  
Another command which uses average ranks instead of different scores is ‘nptrend’. 
‘nptrend’ performs a nonparametric test for trend across ordered groups and is an 
extension of the Wilcoxon rank-sum test. The ‘nptrend’ command has extra flexibility 
compared to ‘ptrend’ as it allows the inclusion of more groups in the table (e.g. so that 
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the Pearson’s correlation can be extended to 3 X 3 tables). A modification of the 
‘nptrend’ command (which can be located in Stata using ‘findit snp12’) is available 
which allows for stratified tests for trend using exact and large sample methods.6 This 
modified command is well-suited for matched stratified data that are sparse and 
remains valid even if any cell counts in the stratums are 0s or 1s.  

3.2.2 Trends for ordered person-time data 
A test for trend is available in Stata for person-time data. It is called ‘tabrate’ and it 
calculates prevalence rates with 95% confidence intervals using the Poisson 
distribution. Consider the following fictitious data: 
 
 

Year Cases Population 

1980 12 1,000 

1981 24 1,000 

1982 36 1,000 

1983 60 1,000 

1984 72 1,000 

1985 60 1,000 

1986 96 1,000 

1987 108 1,000 
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 Figure 3.3: Incidence of a disease, 1980–1987, in chronological order 
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. tabrate cases year, e(population) graph trend 
 
table of cases (D), person-years (Y), and rates per 1000 person-years 
 
  +--------------------------------------------------+ 
  | year    _D       _Y     _rate   ci_low   ci_high | 
  |--------------------------------------------------| 
  | 1980    12   1000.0    12.000    6.815    21.130 | 
  | 1981    24   1000.0    24.000   16.086    35.807 | 
  | 1982    36   1000.0    36.000   25.968    49.908 | 
  | 1983    60   1000.0    60.000   46.587    77.275 | 
  | 1984    72   1000.0    72.000   57.150    90.708 | 
  | 1985    60   1000.0    60.000   46.587    77.275 | 
  | 1986    96   1000.0    96.000   78.595   117.259 | 
  | 1987   108   1000.0   108.000   89.437   130.416 | 
  +--------------------------------------------------+ 
 
chi-squared for trend    126.71 ( 1 df, p =  0.000 ) 
 

 
The chi-square test for trend in significant, so there is trend in incidence rate of the 
disease over time.  
If the data were reordered, so there was no linear trend. 
 
Year New order Cases Population 

1980 6 12 1,000 

1981 5 24 1,000 

1982 2 36 1,000 

1983 1 60 1,000 

1984 8 72 1,000 

1985 7 60 1,000 

1986 4 96 1,000 

1987 3 108 1,000 
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 Figure 3.4: Incidence of a disease, 1980–1987, not in chronological order 

 
. tabrate cases neworder, e(population) graph trend 
 
table of cases (D), person-years (Y), and rates per 1000 person-years 
 
  +------------------------------------------------------+ 
  | neworder    _D       _Y     _rate   ci_low   ci_high | 
  |------------------------------------------------------| 
  |        1    60   1000.0    60.000   46.587    77.275 | 
  |        2    36   1000.0    36.000   25.968    49.908 | 
  |        3   108   1000.0   108.000   89.437   130.416 | 
  |        4    96   1000.0    96.000   78.595   117.259 | 
  |        5    24   1000.0    24.000   16.086    35.807 | 
  |        6    12   1000.0    12.000    6.815    21.130 | 
  |        7    60   1000.0    60.000   46.587    77.275 | 
  |        8    72   1000.0    72.000   57.150    90.708 | 
  +------------------------------------------------------+ 
 
chi-squared for trend      2.48 ( 1 df, p =  0.116 ) 
 

 
The chi-square test for trend is not significant, so there is no trend in the incidence rate 
of the disease. 
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3.2.3 Limitations of chi-square tests 
Sribney3 evaluated various tests for trend (including Mantel-Haenszel chi-square test 
for trend, Pearson’s correlation, ‘ptrend’ or Cochran-Armitage test, and ‘nptrend’ 
command) and demonstrated that these tests are simply a Pearson’s correlation 
coefficient (a test suitable to determine the correlation between two variables and its 
significance). A Pearson’s correlation coefficient uses linear regression to compute the 
slope, and the null hypothesis is that the slope is equal to zero. As Pearson’s correlation 
coefficient is a measure of the strength of the linear relationship between two variables, 
it assumes the relationship would be a straight line on a scatterplot. This test is 
powerful against alternative hypotheses of consistently increasing or decreasing trend, 
but not at all powerful against curvilinear (or other) associations, with no linear 
component.3 If the relationship is curvilinear or non-linear, the graph of the 
relationship might bend or even resemble a ‘U’ and Pearson’s correlation coefficient 
will understate the true correlation, sometimes to the point of being useless or 
misleading. In these instances, the usual overall Pearson’s chi-square can detect the 
association with more power. 
False ‘linear’ trends can be obtained if there is an incremental (series of steps with 
levelling off) rather than smooth dose-response or trend relationship. For this reason, it 
is important to graph or tabulate the data to see if a trend makes sense in the range of 
exposures of interest, and check for any incremental increases in odds ratios, relative 
risks, or incidence rate ratios. 
To demonstrate that the chi-square test for trend (using the ‘ptrend’ command) is 
almost identical to linear regression using the example in 3.2.1: 
 
. regress _prop agegroup 
 
Source |       SS       df       MS              Number of obs =       8 
-------------+------------------------------           F(  1,     6) =  255.69 
       Model |  .617652158     1  .617652158           Prob > F      =  0.0000 
    Residual |  .014493562     6  .002415594           R-squared     =  0.9771 
-------------+------------------------------           Adj R-squared =  0.9733 
       Total |   .63214572     7  .090306531           Root MSE      =  .04915 
 
------------------------------------------------------------------------------ 
       _prop |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    agegroup |   .1212683   .0075838    15.99   0.000     .1027114    .1398252 
       _cons |  -.0953068   .0382964    -2.49   0.047    -.1890146    -.001599 
------------------------------------------------------------------------------ 

 
The slope determined by linear regression (0.1212683) is similar to that obtained using 
the ‘ptrend’ command (0.12173) for the variable ‘age group’, and both methods show a 
trend over time with p<0.001. 
Similarly, for the example in 2.3.1 in which the case numbers were the same, but the 
age groups were mixed up to disguise the trend by age: 
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. regress _prop agegroup 
 
Source |       SS       df       MS              Number of obs =       8 
-------------+------------------------------           F(  1,     6) =    0.00 
       Model |  .000515308     1  .000515308           Prob > F      =  0.9465 
    Residual |  .631630412     6  .105271735           R-squared     =  0.0008 
-------------+------------------------------           Adj R-squared = -0.1657 
       Total |   .63214572     7  .090306531           Root MSE      =  .32446 
 
------------------------------------------------------------------------------ 
       _prop |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    agegroup |  -.0035027   .0500647    -0.07   0.946    -.1260065    .1190011 
       _cons |    .466163   .2528141     1.84   0.115    -.1524509    1.084777 
------------------------------------------------------------------------------ 

 
The slope determined by linear regression (-0.0035027) is similar to that obtained using 
‘ptrend’ (-.00081) for the variable ‘age group’, and both methods show no trend over 
time (p=0.946 and 0.897, respectively).  

3.3 Regression procedures 
Regression procedures can be simply thought of as methods which allow investigation 
of an input/output relationship.4 A mathematical model is constructed which relates 
the input (variables that are thought to be related to the outcome called ‘independent 
variables’ and denoted by X) with the output (the ‘dependent variable’ and denoted by 
Y).4 The most commonly used models are ‘linear models’ which assume that the X 
variables combine in a linear fashion to predict Y, a process which gives useful 
regression parameters such as the slope and intercept of the line. No model can predict 
the Y variable perfectly, and the model provides an error term (otherwise known as the 
‘residuals’) to account for this. Linear models are appropriate when the outcome 
variable is normally distributed, but the models can be generalised so that the 
modelling procedure is similar for many different situations such as when the 
distribution is non-normal or discrete (can only be integers) (see Section 3.4).4  
Common regression procedures include Ordinary Least Squares regression, logistic 
regression, and Poisson regression (see Table 3.1). The choice of an appropriate model 
should be guided by the characteristics of the outcome variable (Y). For example, when 
the outcome variable is continuous, then an appropriate analysis is linear regression 
(see Table 3.1). Regression procedures are more powerful tests of association than chi-
square statistics.1 That is, for a given sample size, one can demonstrate an effect with a 
narrower confidence interval (smaller p-value). Another advantage is that regression 
procedures are able to generate estimates of future rates as well as average annual per 
cent change, neither of which are automatically obtained when conducting a chi-square 
test for linear trend.7 Graphs of the predicted values, projected values and their 
confidence bands can be plotted.7 Another advantage of using regression models is 
that other variables can be included in the model and can be simultaneously adjusted 
for.1 For example, a regression that models the association between time and the 
outcome of interest, can also include variables that are confounders and effect 
modifiers of this association, thereby adjusting the predicted rates, projected rates and 
their confidence bands appropriately.7 
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Table 3.1: Common regression models 

Outcome (Y) Example Regression model Estimate 

Continuous Lab values (e.g. blood alcohol levels) Linear XY ∆∆  

Interval 1,2,3,4 Linear XY ∆∆  

Ordered categorical Scales (good, better, best) Logit OR 

Number of events Deaths/year 

Strokes/1000 persons 

Poisson 

Poisson 

IRR 

RR 

Binary (0/1) Disease, death Logistic OR 

Time to event Death after operation Cox regression HR 

OR = odd ratio; RR = relative risk; IRR = incidence rate ratio; HR = hazard ratio 

3.4 Generalised linear models 
The concept of generalised linear models places all the commonly used regression 
models into a unified framework.1 In its simplest form, a linear model specifies the 
linear relationship between a dependent variable (Y) and a set of predictor variables 
(Xs) (also referred to as covariates). 
 

)X(Slope...)X(Slope)X(SlopeInterceptY kk2211 ⋅++⋅+⋅+=  

 
For example, from a sample of data measuring height and weight and recording 
gender, you could use linear regression to estimate (i.e. predict) a person’s weight as a 
function of the person’s height and gender. For many data analysis problems, a linear 
relationship between variables is adequate to describe the observed data, and to make 
reasonable predictions for new observations. However, there are many relationships 
that cannot adequately be summarised by a simple linear equation. For example, the 
distribution of the data may not be normal and the outcomes may not be continuous; 
they may be binary, multinomial (can take only a distinct number of values), skewed, 
or discrete. 
A generalised linear model is an extension of the linear modelling process that allow 
models to be fit that follow probability distributions other than normal and have 
residuals (errors) that are not normally distributed.1 The dependent variable values are 
predicted from a linear combination of predictor variables, which are ‘connected’ to the 
dependent variable via a link function. 
 

( ) )X...(Slope)X(Slope)X(SlopeInterceptµgg(E[y]) kk2211 ⋅+⋅+⋅+==  

Where: 
µ E(y)= is the mean outcome 

 ) g( is the function of the mean outcome. It is called the ‘link’ function since it is the 
link between the mean and the linear predictor 
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These generalised linear models are all characterised by: 
1) a link 
2) a family or error term 
3) a linear predictor 
 
Linear regression, logistic regression and Poisson regression are all members of the 
generalised linear model family. There are ‘canonical forms’ (i.e. pairs) of link functions 
and error structures that commonly go together. For example, the canonical form for 
the logit function is the binomial error structure, which results in logistic regression. 

Table 3.2: Canonical forms 

Regression Model Error Link 

Linear Normal Identity 

Logistic Binomial Logit 

Poisson Poisson Log 

 
In logistic regression, in order to relate the expected outcome E[y], where y is binary, to 
the linear combination of predictors, the expected outcome is transformed using the 
logit function. This enables the transformed mean to follow a linear model, so that the 
right hand side of the regression equations for both linear and logistic regressions is of 
similar form. The regression parameters (the intercept and slope) are derived by a 
general method of estimation called maximum likelihood estimation (MLE). A detailed 
explanation of the theory behind generalised linear models is beyond the scope of this 
report.  
When using Stata for data manipulations,2 there are usually two options for the syntax. 
A model can be specified either using 1) the ‘glm’ command where the link function 
and family distribution must be specified, or 2) the model-specific command (e.g. 
‘regress’ ‘logistic’ or ‘poisson’). Both command options will converge to the same 
result, but sometimes the ‘glm’ option provides extra flexibility or functions and other 
times the model-specific command is preferable. The help option in Stata can aid 
decision-making (e.g. see ‘help glm’, ‘help regress’, ‘help logistic’ and ‘help poisson’). 

3.5 Ordinary Least Squares regression 
For linear regression, the algorithm used to fit the data is called ordinary least squares 
(OLS). It determines what estimate minimises the squared distance between the 
observed data and the fitted values from the model. 8 The OLS model is appropriate 
when the dependent variable (Y) is continuous or an interval variable.9 Each 
observation has a corresponding error term or ‘residual’, which is the difference 
between the actual value and the predicted value at that level of the independent 
predictor. When using linear regression, there are five assumptions; 1) that a linear 
model is appropriate for the data, 2) the observations are independent, 3) the residuals 
are therefore uncorrelated, 4) there is homogeneity of variance — the spread of 
residuals at each level of the predictor variable (X) is symmetrical around the 
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regression line, and the spread is similar for each distribution, and 5) the residuals 
have a normal distribution with mean 0 and a common variance of 2σ  (Figure 3.5).8 
 
For modelling rates: 

error terman  is ε and analysed, being years ofnumber   the to1  i where
ε  )Year(SlopeInterceptrate iii

=
+⋅+=

 

 

x

y

 
 Figure 3.5: The distribution of the residuals at each level of the predictor variable 

 
As an example of linear regression, we will look at infant mortality rates in Australia 
from 1900–2000 using data from the Australian Bureau of Statistics.10 Count data often 
follow a Poisson distribution, 9 so some type of Poisson analysis might be more 
appropriate, provided the numerator (counts) and denominator (population) data were 
available for the infant mortality rates. However, for the purposes of this example, we 
will use linear regression. 
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Year 
Infant mortality rate

(per 1,000 live births) 

1900 103.6 

1910 74.8 

1920 69.1 

1930 47.2 

1940 38.4 

1950 24.5 

1960 20.2 

1970 17.9 

1980 10.7 

1990 8.2 

2000 5.2 
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 Figure 3.6: Infant mortality rate in Australia, 1900–2000 

 
The graph shows there has been a decline in infant mortality rates over the 100 years. 
Infant mortality rates appear to follow a slight curvilinear trend which suggests a 
polynomial model may be more appropriate than a linear model. We will firstly test 
the linear model. 
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. regress infant year 
 
      Source |       SS       df       MS              Number of obs =      11 
-------------+------------------------------           F(  1,     9) =   80.27 
       Model |  9280.98337     1  9280.98337           Prob > F      =  0.0000 
    Residual |  1040.60205     9   115.62245           R-squared     =  0.8992 
-------------+------------------------------           Adj R-squared =  0.8880 
       Total |  10321.5854    10  1032.15854           Root MSE      =  10.753 
 
------------------------------------------------------------------------------ 
      infant |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        year |  -.9185455   .1025238    -8.96   0.000     -1.15047   -.6866205 
       _cons |   1829.327   199.9477     9.15   0.000     1377.014     2281.64 
------------------------------------------------------------------------------ 

 
The estimate of the slope for the variable ‘year’ is -0.9185455. The intercept at year 1900 
is denoted by _cons and is 1829.327, which is not meaningful. If we centre the intercept 
by subtracting 1900, the intercept )β( 0 has a natural interpretation of the baseline 
mortality rate in the first year of the observations. 
 
. gen c_year = year-1900 
. regress infant c_year 
 
      Source |       SS       df       MS              Number of obs =      11 
-------------+------------------------------           F(  1,     9) =   80.27 
       Model |  9280.98337     1  9280.98337           Prob > F      =  0.0000 
    Residual |  1040.60205     9   115.62245           R-squared     =  0.8992 
-------------+------------------------------           Adj R-squared =  0.8880 
       Total |  10321.5854    10  1032.15854           Root MSE      =  10.753 
 
------------------------------------------------------------------------------ 
      infant |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      c_year |  -.9185455   .1025238    -8.96   0.000     -1.15047   -.6866205 
       _cons |   84.09091    6.06539    13.86   0.000     70.37004    97.81178 
------------------------------------------------------------------------------ 

 
Test for linear trend 

0β:H  vs.0β:HTest 1110 ≠=  

The ‘test for linear trend’ is the test of the null hypothesis that the coefficient year=0. 
The probability is <0.001, so we reject the null hypothesis and state that there is a linear 
trend.  
Are the coefficients meaningful?  
-0.9185455 is the ‘slope’—the decline in infant mortality per one year increase 
84.09091 is the ‘intercept’—infant mortality rate when the year is zero 
 
The interpretation would be that the infant mortality rate dropped by approximately 
0.92 deaths per year [95% CI: -1.15 to -0.687; p<0.001].  
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This means that in the year 2010 (110 years from the first observation), the infant 
mortality rate would be predicted to be -16.9 deaths, which is impossible. 
 

error terman  is ε and analysed, being years ofnumber   the to1  i where
ε  )Year(SlopeInterceptrate

i

iii

=
+⋅+=

 

. display 84.09091 + (-.9185455*110) 
-16.949455 

 
To display this graphically, we generate the mortality rate predicted by the linear 
regression model, and graph both the observed and predicted infant mortality rates. 
 
. regress infant c_year (output omitted) 
. predict exp_infant 
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 Figure 3.7: Infant mortality rate in Australia, 1900–2000, predicted by linear regression 
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It is often preferable to model the natural logarithm of the rates. 
 
.gen loginfant = log(infant) 
.regress loginfant c_year 
 
      Source |       SS       df       MS              Number of obs =      11 
-------------+------------------------------           F(  1,     9) =  760.53 
       Model |  9.29723867     1  9.29723867           Prob > F      =  0.0000 
    Residual |  .110022309     9  .012224701           R-squared     =  0.9883 
-------------+------------------------------           Adj R-squared =  0.9870 
       Total |  9.40726098    10  .940726098           Root MSE      =  .11057 
 
------------------------------------------------------------------------------ 
   loginfant |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      c_year |  -.0290724   .0010542   -27.58   0.000    -.0314571   -.0266876 
       _cons |    4.71776   .0623673    75.64   0.000     4.576676    4.858845 
------------------------------------------------------------------------------ 

 
The average annual per cent change in infant mortality rates can be calculated from the 
log linear regression estimates. The estimates must be exponentiated in order to report 
the results in the usual units. The formula is [ ]1)βexp(100 1 −  

 
. di 100*(exp(-.0290724)-1) 
-2.8653864 
. di 100*(exp(-.0266876)-1), 100*(exp(-.0314571)-1) 
-2.6334633 -3.0967473 
The average annual per cent change is -2.9% [95% CI: -2.6% to -3.1%] 
 To predict the infant mortality rate in 2010: 
 

error terman  is ε and analysed, being years ofnumber   the to1  i where
ε  )Year(SlopeIntercept)ln(rate

i

iii

=
+⋅+=

 

. display 4.71776 + (-.0290724*110) 
1.519796 
Then exponentiate the regression estimate: 
. display exp(1.519796) 
4.5712926 

 
The infant mortality rate is predicted to be 4.6 per 1,000 live births in the year 2010. 
When modelling a natural logarithm of the infant mortality rates, an infant mortality 
rate of zero will never be predicted, which is a more realistic result.  
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Generate the mortality rate predicted by the log linear regression model. 
. regress loginfant c_year (output omitted) 
. predict logexp_infant 
 
Then exponentiate the regression estimates in order to report the results in the usual 
units. 
. gen exp_infant = exp(logexp_infant) 
 
The observed infant mortality rates and the rates predicted by the log linear regression 
model are graphed below. 
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 Figure 3.8: Infant mortality rate in Australia, 1900–2000, predicted by log linear regression 
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There may be different non-linear models (e.g. quadratic) that better fit the data. 
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 Figure 3.9: Infant mortality rate in Australia, 1900–2000, quadratic prediction 

 
To test whether it is quadratic, first generate the parameters for the quadratic model 
below: 
 

error terman  is ε and analysed, being years ofnumber   the to1  i where
ε  )Year(Slope)Year(SlopeInterceptrate

i

i1year2iyear1

=

+⋅+⋅+=
 

. gen c_year2 = c_year^2 (generates the variable 2
iyear ) 

. regress infant c_year c_year2 

 
      Source |       SS       df       MS              Number of obs =      11 
-------------+------------------------------           F(  2,     8) =  331.09 
       Model |  10198.3771     2  5099.18853           Prob > F      =  0.0000 
    Residual |  123.208359     8  15.4010449           R-squared     =  0.9881 
-------------+------------------------------           Adj R-squared =  0.9851 
       Total |  10321.5854    10  1032.15854           Root MSE      =  3.9244 
 
------------------------------------------------------------------------------ 
      infant |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      c_year |  -1.952578   .1391044   -14.04   0.000    -2.273353   -1.631803 
     c_year2 |   .0103403   .0013398     7.72   0.000     .0072508    .0134298 
       _cons |    99.6014   2.989827    33.31   0.000     92.70684     106.496 
------------------------------------------------------------------------------ 
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To predict the infant mortality rate for 2010: 
. display 99.6014 + (-1.952578*110) + (.0103403*110^2) 
9.93545 
The infant mortality rate is predicted to be 9.9 per 1,000 live births in the year 2010. 
 
Test for non-linear trend 

0β:H  vs.0β:HTest 2120 ≠=  

The test for non-linear trend is the test of the null hypothesis that the coefficient 
‘c_year2’ is=0. Here the probability is <0.001, so we reject the null hypothesis and state 
that there is a non-linear trend between ‘c_year2’ and infant mortality. 

3.5.1 Limitations of ordinary least squares regression 
One of the main assumptions for OLS regression is homogeneity of variance of the 
residuals.8 When plotting rates for a defined time period, the regression procedure 
does not have access to information on the population sizes that gave rise to the rates at 
each time point.7 When modelling 10 years of mortality rate data, the sample size 
equals 10 observations regardless of whether the underlying population denominator 
for each rate is in the 1,000s or 100,000s and varies in size from year to year. This means 
that OLS regression accounts for the variance across the time points plotted, but cannot 
account for the variability or random error in each individual rate.7 Therefore the 
assumption of homogeneity of variance does not hold, and you should not do a simple 
linear regression through the plotted rates. A better alternative as a test for trend is 
variance-weighted least squares regression, as unlike OLS regression, homogeneity of 
variance is not assumed. 3, 11 In Stata, the command to use is ‘vwls’. 
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3.6 Variance-weighted Least Squares 
regression 

Variance-weighted least squares regression is also a linear model, but differs from OLS 
regression by weighting the observations to account for non-homogeneity of 
variance.11 Each observation is weighted proportional to the reciprocal of the variance 
of the dependent variable at each value of the independent variable. In other words, 
the weights are x)|1/Var(y .3 Observations at values of the independent variable with 
large variances are down-weighted and observations with small variances are up-
weighted prior to the regression being performed.3, 11 This weighting decreases the 
heterogeneity of the spread of residuals and results in a better fit for the linear model. 
Some data sets have observations for individuals (e.g. cohort studies) and provide a 
large enough sample size for each value of the independent variable to allow standard 
deviations for each value to be calculated internal to the data in Stata. The conditional 
standard deviations are calculated prior to the regression using the groups defined by 
the independent variable.11  
In contrast, mortality rates are calculated from grouped observations (number of 
deaths in an age- and sex-specific strata) and population sizes that gave rise to each 
observation are not included in the data set. This prevents calculation of standard 
deviations for each value of the independent variable (e.g. year) internal to the data. 
This means that for mortality rates (where there is only one observation per population 
group) an estimate of the conditional standard deviation (which will vary observation 
by observation) must be provided as an extra variable in the data set. The process of 
age-standardisation generates the variance for each mortality rate (see Section 2). The 
standard deviation is simply the square root of the variance, so it can easily be 
calculated.8  
As an example of variance-weighted least squares regression, we will look at injury 
mortality rates in Australia (1997–2000) by Indigenous status and remoteness.12 The 
injury rates are directly age-adjusted using the total population of Australia in 2001 
and the remoteness zones are determined according to the Australian Standard 
Geographical Classification (ASGC). The data is for South Australia, Western 
Australia, the Northern Territory and Queensland only, as these jurisdictions are 
considered to have the most reliable identification of Indigenous status. Some type of 
Poisson analysis might be more appropriate if this data were in numerator (count) and 
denominator (population) format. If the data is only available as directly adjusted rates 
(as presented here) then variance-weighted least squares regression is appropriate. 
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ASGC zone 
1=cites, 2=inner regional, 3=outer 
regional, 4=remote, 5=very remote 

Indigenous
0=Other, 

1=Indigenous 
Age-adjusted rate 

(per 100,000) Standard deviation 

1 0 34.6 0.5 

2 0 43.0 1.0 

3 0 46.2 1.1 

4 0 49.9 2.4 

5 0 47.0 3.3 

1 1 70.0 6.5 

2 1 52.3 7.6 

3 1 102.6 7.7 

4 1 150.7 12.7 

5 1 141.3 8.0 
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 Figure 3.10: Age-adjusted injury mortality rate in Australia by remoteness zone 

 
The graph shows a much greater increase in injury mortality for Indigenous 
Australians than for Non-Indigenous Australians as the ASGC zones become 
increasingly more remote. The tabulated data shows that there is a much greater 
variance for Indigenous Australians compared to Non-Indigenous Australians for age-
adjusted injury mortality rates. Indigenous Australians comprise only about 2% of the 
Australian population, and therefore their small numbers would mean greater variance 
is to be expected. 
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To illustrate why simple linear regression is inappropriate for looking at trends over 
time, compare the results from simple linear regression with variance-weighted least 
squares regression. 
 

Non-Indigenous age-adjusted mortality by remoteness zone 
 
Simple linear regression 
. regress adjrate ASGC if ind==0 
 
      Source |       SS       df       MS              Number of obs =       5 
-------------+------------------------------           F(  1,     3) =    8.22 
       Model |   100.48678     1   100.48678           Prob > F      =  0.0642 
    Residual |  36.6613667     3  12.2204556           R-squared     =  0.7327 
-------------+------------------------------           Adj R-squared =  0.6436 
       Total |  137.148147     4  34.2870366           Root MSE      =  3.4958 
 
------------------------------------------------------------------------------ 
     adjrate |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        ASGC |   3.169965   1.105462     2.87   0.064    -.3481075    6.688037 
       _cons |   34.62889   3.666402     9.44   0.003     22.96076    46.29701 
------------------------------------------------------------------------------ 

 
The slope is positive (3.169965) but the confidence intervals range from -.3481075 to 
6.688037 and death rates cannot be negative in the real world, but the model would 
generate negative death rates with its CI limits.  
 
Variance-weighted least squares regression 
. vwls adjrate ASGC if ind==0, sd(stdev) 
 
Variance-weighted least-squares regression           Number of obs   =       5 
Goodness-of-fit chi2(3)    =   16.22                 Model chi2(1)   =  150.35 
Prob > chi2                =  0.0010                 Prob > chi2     =  0.0000 
------------------------------------------------------------------------------ 
     adjrate |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        ASGC |   5.225352    .426147    12.26   0.000     4.390119    6.060585 
       _cons |   29.89375   .7594632    39.36   0.000     28.40523    31.38227 
------------------------------------------------------------------------------ 

 
The slope is positive (5.225352) but the confidence intervals do not cross zero (4.390119 
to 6.060585). There is a significant increase in non-Indigenous mortality by remoteness. 
The ‘Goodness-of-fit’ chi-squared test that ‘vwls’ produces is a test for the adequacy of 
the linear model. The large value of this statistic (and the small p-value corresponding 
to it) strongly suggest that the linear model doesn't fit the data well. 
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Indigenous age-adjusted mortality by remoteness zone 
 
Simple linear regression 
. regress adjrate ASGC if ind==1 
 
      Source |       SS       df       MS              Number of obs =       5 
-------------+------------------------------           F(  1,     3) =   10.97 
       Model |  5814.58059     1  5814.58059           Prob > F      =  0.0453 
    Residual |   1590.8369     3  530.278967           R-squared     =  0.7852 
-------------+------------------------------           Adj R-squared =  0.7136 
       Total |  7405.41749     4  1851.35437           Root MSE      =  23.028 
 
------------------------------------------------------------------------------ 
     adjrate |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        ASGC |   24.11344   7.282026     3.31   0.045      .938786     47.2881 
       _cons |   31.04069   24.15175     1.29   0.289    -45.82094    107.9023 
------------------------------------------------------------------------------ 

The slope is positive (24.11344) and just reaches significance.  
 
Variance-weighted least squares regression 
. vwls adjrate ASGC if ind==1, sd(stdev) 
 
Variance-weighted least-squares regression           Number of obs   =       5 
Goodness-of-fit chi2(3)    =   21.30                 Model chi2(1)   =   78.91 
Prob > chi2                =  0.0001                 Prob > chi2     =  0.0000 
------------------------------------------------------------------------------ 
     adjrate |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        ASGC |   21.42015   2.411285     8.88   0.000     16.69412    26.14618 
       _cons |   36.32533   7.328247     4.96   0.000     21.96223    50.68843 
------------------------------------------------------------------------------ 

 
The slope is positive (21.42015) and the confidence intervals are much narrower 
(16.69412 to 26.14618). There is a significant positive increase in Indigenous mortality 
by remoteness, and it is greater than for non-Indigenous Australians. The ‘goodness-of-
fit’ chi-squared test is significant, suggesting the linear model is not a good fit for the 
data. 
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3.7 Logistic regression 
Logistic regression is used when the dependent variable is binary or dichotomous so 
that y is a 0/1 variable (0 is ‘unexposed’, 1 is ‘exposed’).13 The independent predictor 
variables can be binary, categorical (more than two categories) or continuous.4 Some 
examples where logistic regression is appropriate are case-control studies and analysis 
of data where there is a yes/no outcome (e.g. death, coronary heart disease etc). If we 
use linear regression with binary outcomes data we encounter several problems: 1) the 
model can give predicted values that exceed the bounds of 0 and 1, and 2) the model 
assumes a normal distribution of residuals, when the errors actually follow a binomial 
distribution. Logistic regression solves these problems by transforming the dependent 
variable so that the assumptions of linearity, normality and homogeneity of variance 
are better met. Logistic regression uses a maximum likelihood estimation procedure 
rather than the least square estimation procedure used in simple linear regression. 13 As 
an aside, in matched case-control studies each case is matched directly with one or 
more controls on some factor (e.g. age, socioeconomic status) and this requires a 
particular analysis known as conditional logistic regression, not described in this 
report. 
Consider the following fictitious data of a case-control study into drunk driving (blood 
alcohol concentration greater than 0.05) and the probability of death when injured in a 
car accident. A case (1) is someone who died in a car accident and a control (0) is 
someone in a car accident who did not die. For driving while under the influence of 
alcohol, the number of exposed cases was 50, exposed controls 260, non-exposed cases 
140 and non-exposed controls 9,570. 
 
Case (Dead) Exposure (BAC > 0.05) Population 

1 1 50 

1 0 140 

0 1 260 

0 0 9,570 

 
With this grouped data, the analysis can be carried out in Stata using the following 
command: 
. logistic case exposed [fw=pop] 
 
Otherwise, to convert the data to individual observations, use the following: 
. expand pop 
(10016 observations created) 
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.logistic case exposed 
 

Logistic regression                               Number of obs   =      10020 
                                                  LR chi2(1)      =     144.31 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -869.44256                       Pseudo R2       =     0.0766 
 
------------------------------------------------------------------------------ 
        case | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
     exposed |    13.1456    2.31789    14.61   0.000       9.3045     18.5724 
------------------------------------------------------------------------------ 

 
This output is interpreted as the odds of exposure to alcohol (BAC > 0.05) among cases 
is 13 times higher than among controls, and is statistically significant at p<0.001.  
To obtain the coefficients of the logistic regression (intercept and slope), the logit 
command can be used. Logit is defined as the log base e (log) of the odds.  
 
. logit case exposed 
 
Iteration 0:   log likelihood = -941.59682 
Iteration 1:   log likelihood = -937.03099 
Iteration 2:   log likelihood =  -871.3212 
Iteration 3:   log likelihood = -869.45519 
Iteration 4:   log likelihood = -869.44256 
 
Logit estimates                                   Number of obs   =      10020 
                                                  LR chi2(1)      =     144.31 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -869.44256                       Pseudo R2       =     0.0766 
 
------------------------------------------------------------------------------ 
        case |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
     exposed |   2.576087   .1763243    14.61   0.000     2.230498    2.921677 
       _cons |  -4.224746   .0851314   -49.63   0.000      -4.3916   -4.057892 
------------------------------------------------------------------------------ 

 
The results are interpreted just like linear regression. If there is no relationship between 
blood alcohol concentration and the probability of death, the line will be flat (slope=0), 
otherwise there will be a non-zero slope if there is a relationship. There is an increase in 
the log of the odds of death when the driver is exposed to alcohol (p<0.001). The slope 
estimate is interpreted as the log odds ratio—the odds ratio can be computed by 
raising e to the power of the logistic coefficient [exp(slope) = OR].  
 
. display exp(2.576087) = 13.1456  
[same result as logistic] 
 
Logistic regression can work for continuous predictors as well. For example, instead of 
coding exposure to alcohol (blood alcohol concentration >0.05) as 0/1, the actual blood 
alcohol levels could be included (e.g. 0.00, 0.05, 0.10) to provide a more informative 
model.  
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Logistic regression can be used to monitor trends over time. Drivers in car accidents 
who are admitted to hospital or die at the scene are routinely tested for blood alcohol 
concentration in Australia. The fictitious data below is a case-control study of alcohol 
involvement in car accidents for three consecutive years.  
 
Year Case (Dead) Exposure (BAC > 0.05) Population 

2001 1 1 50 

 1 0 140 

 0 1 260 

 0 0 9,570 

2002 1 1 79 

 1 0 173 

 0 1 275 

 0 0 9,563 

2003 1 1 112 

 1 0 166 

 0 1 314 

 0 0 9,508 

 
If year is categorised as 1=2001, 2=2002 and 3=2003, then Stata will assign the lowest 
category as the reference category (in this case 2001). The command in Stata that 
permits categories is the ‘xi:’ command and an ‘i.’ is placed preceding the variable to be 
categorised, in this case, year. 
 
. xi: logistic case exposed i.year [fw=pop] 
 
i.year            _Iyear_1-3          (naturally coded; _Iyear_1 omitted) 
 
Logistic regression                               Number of obs   =      30210 
                                                  LR chi2(3)      =     777.56 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -3012.9788                       Pseudo R2       =     0.1143 
 
------------------------------------------------------------------------------ 
        case | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
     exposed |   16.77956   1.450959    32.61   0.000     14.16367    19.87859 
    _Iyear_2 |   1.294977   .1293915     2.59   0.010     1.064662    1.575116 
    _Iyear_3 |   1.351432   .1327056     3.07   0.002     1.114832    1.638246 
------------------------------------------------------------------------------ 

 
This output is interpreted as the odds of exposure to alcohol (BAC > 0.05) among cases 
is over 16 times higher than among controls, and is statistically significant at p<0.001. 
There is an increase in the odds of death over time (statistically significant at p<0.05). 
Compared to 2001, the odds of death increased by 29% in 2002 and by 35% in 2003.  
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If we look at those whose blood alcohol concentration was less than 0.05, there is no 
statistically significant increase in the odds of death from a car accident over the three 
years. 
 
. xi: logistic case i.year if exposed==0 [fw=pop] 
 
i.year            _Iyear_1-3          (naturally coded; _Iyear_1 omitted) 
 
Logistic regression                               Number of obs   =      29120 
                                                  LR chi2(2)      =       3.90 
                                                  Prob > chi2     =     0.1421 
Log likelihood = -2440.5705                       Pseudo R2       =     0.0008 
 
------------------------------------------------------------------------------ 
        case | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    _Iyear_2 |   1.236619   .1417117     1.85   0.064     .9878511    1.548033 
    _Iyear_3 |   1.193446   .1380308     1.53   0.126     .9513824    1.497099 
------------------------------------------------------------------------------ 

 
Whereas for those with a blood alcohol concentration greater than 0.05, the odds of 
death significantly increased over time. 
 
. xi: logistic case i.year if exposed==1 [fw=pop] 
 
i.year            _Iyear_1-3          (naturally coded; _Iyear_1 omitted) 
 
Logistic regression                               Number of obs   =       1090 
                                                  LR chi2(2)      =      11.09 
                                                  Prob > chi2     =     0.0039 
Log likelihood =  -570.3016                       Pseudo R2       =     0.0096 
 
------------------------------------------------------------------------------ 
        case | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    _Iyear_2 |   1.493818   .2992888     2.00   0.045     1.008691    2.212266 
    _Iyear_3 |   1.854777   .3517209     3.26   0.001     1.279024    2.689706 
------------------------------------------------------------------------------ 

 
Drivers who drink and drive when over the limit are clearly at greater risk of death if 
injured in a car accident than those who abstain. The three years of data (if not 
fictitious) would show an increasing trend in deaths from drink-driving and would 
provide a warning that prevention strategies had not been effective. 
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3.8 Poisson regression 
Count variables indicate how many times something has happened and examples 
include number of deaths, hospitalisations, injuries, number of bombs dropped during 
a war, to name just a few. Poisson regression is an extension of logistic regression and 
is useful when the risk of an event to an individual is small, but there are a large 
number of individuals.4 Count data often follow a Poisson distribution—when the 
population size n is large, the probability of an individual event π  is small, but the 
expected number of events, πn , is moderate (say five or more).14  
If we let πλ n= (λ is the rate of occurrence or the expected number of times an event 
will occur over a given period of time) and y be a random variable indicating the 
number of times an event did occur, and let ∞→n , we would find the relationship 
between the expected count (λ ) and the probability of observing any observed count 
( y ) is specified by the Poisson distribution. 
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The Poisson distribution can be visualised in Figure 3.2 (recreated from an example in 
Long et al9). 
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 Figure 3.11: A plot of the predicted probabilities for the rate parameterλ  
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The mean of the distribution is equal to its variance and both are given by λ  (as λ  
increases, the distribution shifts to the right).9 This means the Poisson distribution has 
a variance which is equal to the mean and a standard deviation equal to the square root 
of the mean. As λ increases, the probability of a zero count decreases and the Poisson 
distribution approximates a normal distribution (shown by the distribution for 
λ =10.5).9 
The Poisson regression model extends the Poisson distribution by allowing each 
observation to have a different value of λ .9 Poisson regression involves the regression 
of a count as the outcome on one or more predictor variables. A log transformation is 
used to adjust for skewness and prevents the Poisson regression model from 
producing negative predicted values. Poisson regression also models the variance as a 
function of the mean.9 
OLS regression has often been applied to count outcomes but this can result in 
inefficient and biased estimates.9 Poisson distributions have three characteristics that 
make OLS regression problematic: 
1. A skewed distribution (OLS assumes a symmetric distribution of errors) 
2. A non-negative distribution (OLS can produce predicted negative values) 
3. The variance of the distribution increases as the mean increases (OLS assumes a 

constant variance) 
 
It is much better to use models which are designed to deal with count outcomes, such 
as Poisson regression.9 Poisson regression has the advantage over OLS regression of 
accounting for variance across the time points plotted and the variability at each time 
point.7 The Poisson regression models the counts in the numerator and denominator 
for each time period rather than the pre-calculated rates. This means the confidence 
intervals will differ for sets of the same rates when the populations they arise from are 
of different sizes.7  
Poisson regression is useful for analysis of studies when the objective is to relate rates 
of injury or disease (counts of events divided by person-years or persons-at-risk) to 
predictor variables such as age, gender, socioeconomic status, exposure to substances 
(e.g. alcohol , tobacco) or other covariates and confounders. 
The Poisson distribution assumes that events are independent and individuals have 
the same risk of experiencing an event over time. In real data, many count variables 
have a variance greater than the mean (‘overdispersion’). This means that the observed 
data vary by more than would be expected by a Poisson distribution. If over-dispersion 
occurs, ignoring it will result in underestimating the standard errors of the regression 
parameter estimates, which may lead to incorrect conclusions. It may arise because an 
important covariate is omitted from the model.4 Another common explanation is when 
the counts display autocorrelation (see Section 1.4). For example, events can recur in 
some individuals and some individuals may be at greater risk of an event than others. 
Data may be overdispersed if there are counts within an individual, such as the 
number of falls or asthma attacks a year, rather than counts within groups of separate 
individuals. 4 In the case of overdispersion, the Negative Binomial Distribution model 
is a better alternative to the Poisson model because it has a variance which is larger 
than the mean.9 For many count variables, there are more observed zeros than 
predicted by the Poisson distribution. There are models that incorporate Poisson 
probabilities but allow the probability of a zero to be a bit larger or a lot larger than is 
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expected according to a Poisson distribution. These are called Zero Inflated Poisson 
(ZIP) models.9  
As an example of Poisson regression, we will look at deaths due to unintentional motor 
vehicle traffic injury in Australia (1990–2000).15 The data is available as counts 
(numerator) and population numbers (denominator) so it is suitable for Poisson 
regression analysis.  
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 Figure 3.12: Motor vehicle injury mortality rate in Australia, 1990–2000 

 
The graph shows there has been a decline in fatalities from motor vehicle traffic 
accidents over the decade. 
We might be interested to see what effect predictors such as age and gender have on 
the mortality rates from unintentional motor vehicle accidents.  
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To do these analyses, the data is entered into Stata using the variables gender:  
0 = males and 1=females, age-group: 1 = 15–39 years, 2 = 40–59 years, and  
3 = 60+ years. There are 66 rows in total for males and females. Mid-year age- and sex-
specific Australian populations are taken to be reasonable estimates of years lived by 
persons who could have become cases. 
 
Year Gender Age-group Deaths Person-years 

1990 0 1 1,054 3,477,224 

1991 0 1 958 3,486,637 

1992 0 1 861 3,497,805 

1993 0 1 858 3,495,650 

1994 0 1 800 3,497,722 

1995 0 1 842 3,508,778 

1996 0 1 811 3,522,090 

1997 0 1 741 3,517,531 

1998 0 1 705 3,510,959 

1999 0 1 710 3,509,163 

2000 0 1 741 3,512,056 

1990 0 2 286 1,931,130 

1991 0 2 251 1,982,700 

1992 0 2 237 2,035,597 

1993 0 2 237 2,088,547 

1994 0 2 247 2,144,216 

1995 0 2 230 2,203,838 

1996 0 2 261 2,267,750 

1997 0 2 215 2,329,313 

1998 0 2 260 2,390,771 

1999 0 2 224 2,451,431 

2000 0 2 248 2,511,606 

1990 0 3 286 1,176,371 

1991 0 3 261 1,203,041 

1992 0 3 209 1,224,682 

1993 0 3 212 1,245,319 

1994 0 3 253 1,266,603 

1995 0 3 246 1,287,604 

1996 0 3 232 1,313,126 

1997 0 3 211 1,343,707 

1998 0 3 194 1,375,510 

1999 0 3 225 1,410,940 

2000 0 3 203 1,448,498 
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Year Gender Age-group Deaths Person-years 

1990 1 1 319 3,412,518 

1991 1 1 319 3,427,986 

1992 1 1 294 3,442,406 

1993 1 1 267 3,441,543 

1994 1 1 249 3,443,263 

1995 1 1 272 3,453,589 

1996 1 1 225 3,472,418 

1997 1 1 257 3,477,568 

1998 1 1 217 3,475,965 

1999 1 1 213 3,479,449 

2000 1 1 236 3,487,036 

1990 1 2 120 1,857,413 

1991 1 2 99 1,913,600 

1992 1 2 120 1,970,900 

1993 1 2 84 2,029,839 

1994 1 2 108 2,091,715 

1995 1 2 126 2,155,731 

1996 1 2 107 2,223,602 

1997 1 2 114 2,292,738 

1998 1 2 96 2,362,010 

1999 1 2 98 2,430,281 

2000 1 2 98 2,499,645 

1990 1 3 221 1,455,478 

1991 1 3 191 1,484,542 

1992 1 3 191 1,506,937 

1993 1 3 164 1,528,669 

1994 1 3 175 1,551,182 

1995 1 3 180 1,574,100 

1996 1 3 163 1,600,413 

1997 1 3 152 1,630,212 

1998 1 3 152 1,660,179 

1999 1 3 154 1,693,719 

2000 1 3 139 1,728,472 



 

A guide to statistical methods for injury surveillance 69 

An an aside, the 66 rows of the dataset can be condensed to 33 rows using the ‘collapse’ 
command for the purpose of summarising data for all persons for each age group.  
 
. collapse (sum) gender deaths personyears, by (year agegroup) 
 
Likewise, the 66 rows can be condensed to 11 rows to summarise data for all persons 
with all age groups combined. The ‘collapse’ function is helpful for formatting data to 
produce summary graphs and summary statistics for trend. 
 
. collapse (sum) gender agegroup deaths personyears, by (year) 
 
Return to the original data. 
.clear 
[and reopen the original saved data file of 66 rows] 
 
To generate a column that displays the crude (unadjusted) death rates by age, gender 
and year, use: 
. gen rate = (deaths/personyears)*100000 
 
What is the overall mortality rate for 1990–2000? If no independent variables are 
included, a model with only an intercept is fitted, which corresponds to fitting a 
univariate Poisson distribution (example below). 
 
. poisson deaths, exposure(personyears) 
 
Iteration 0:   log likelihood =  -3261.209   
Iteration 1:   log likelihood =  -3261.209   
 
Poisson regression                                Number of obs   =         66 
                                                  LR chi2(0)      =      -0.00 
                                                  Prob > chi2     =          . 
Log likelihood =  -3261.209                       Pseudo R2       =    -0.0000 
 
------------------------------------------------------------------------------ 
      deaths |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       _cons |  -8.953202   .0070309 -1273.40   0.000    -8.966983   -8.939422 
 personyears | (exposure) 
------------------------------------------------------------------------------ 

 
The regression coefficient is -8.953202 and it is the log of the crude rate. By 
exponentiating this coefficient and the CI coefficients, we can obtain the crude rate and 
its 95% CIs. 
 
. display exp(-8.953202)*100000 
12.932241 
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. display exp(-8.966983)*100000, exp(-8.939422)*10000012.755244 
12.755244  13.11168 
[lower CI, upper CI] 
There is a crude death rate of 12.9 deaths [95% CI: 12.8 to 13.1] per 100,000 persons per 
year. 
 
To estimate trends over time, we can model the rate of vehicle injury mortality as a 
function of calendar year using Poisson regression; the basic model being 

1990)(yearββlog(rate) 10 −+= . Calendar year can be entered as a continuous variable, 
scaled by subtracting the initial year (1990) so that the intercept can be interpreted as 
the log of the baseline mortality rate in the first year (1990). 
. gen c_year = year–1990 
. poisson deaths c_year, exposure(personyears) 
 

Iteration 0:   log likelihood = -3072.4532   
Iteration 1:   log likelihood = -3072.4532   
 
Poisson regression                                Number of obs   =         66 
                                                  LR chi2(1)      =     377.51 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -3072.4532                       Pseudo R2       =     0.0579 
 
------------------------------------------------------------------------------ 
      deaths |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      c_year |  -.0432333   .0022289   -19.40   0.000    -.0476019   -.0388648 
       _cons |  -8.740711    .012615  -692.88   0.000    -8.765436   -8.715987 
 personyears | (exposure) 
------------------------------------------------------------------------------ 

 
Estimated trends in the mortality rate can be reported as annual per cent change, 
obtained from the fit of the Poisson regression model as [ ]1)βexp(100 1 − .  

. di 100*(exp(-.0432333)-1) 
-4.2312065 
 
Confidence intervals (95%) for the annual per cent change can be calculated. 
. di 100*(exp(-.0388648)-1), 100*(exp(-.0476019)-1) 
-3.8119253 -4.6486695 
[lower CI, upper CI] 
 
The average annual per cent change in mortality rate from 1990–2000 (unadjusted for 
age or gender) is -4.2% [95% CI: -3.8% to -4.6%].  
 
However, it is likely that there are differences between males and females and among 
age groups in the mortality rate for vehicle injury mortality. 
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What is the overall mortality rate for males and females for 1990–2000? 
. bysort gender: poisson deaths, exposure(personyears) 
 
-> gender = 0 
 
Iteration 0:   log likelihood = -929.99854   
Iteration 1:   log likelihood = -929.99854   
 
Poisson regression                                Number of obs   =         33 
                                                  LR chi2(0)      =       0.00 
                                                  Prob > chi2     =          . 
Log likelihood = -929.99854                       Pseudo R2       =     0.0000 
 
------------------------------------------------------------------------------ 
      deaths |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       _cons |   -8.59285   .0083598 -1027.88   0.000    -8.609235   -8.576465 
 personyears | (exposure) 
------------------------------------------------------------------------------ 

 
. display exp(-8.59285)*100000 
18.542687 
For males, there is a crude death rate of 18.5 deaths per 100,000 persons per year. 
 
  
-> gender = 1 
 
Iteration 0:   log likelihood = -424.35729   
Iteration 1:   log likelihood = -424.35729   
 
Poisson regression                                Number of obs   =         33 
                                                  LR chi2(0)      =       0.00 
                                                  Prob > chi2     =          . 
Log likelihood = -424.35729                       Pseudo R2       =     0.0000 
 
------------------------------------------------------------------------------ 
      deaths |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       _cons |  -9.502091   .0129969  -731.11   0.000    -9.527564   -9.476617 
 personyears | (exposure) 
------------------------------------------------------------------------------ 

 
. display exp(-9.502091)*100000 
7.4695478 
For females, there is a crude death rate of 7.5 deaths per 100,000 persons per year. 
 
The rate ratio is: 
. di exp(-9.502091)/ exp(-8.59285) 
.40282986 
 
The ‘ir’ option after the ‘poisson’ command reports incident rate ratios rather than the 
default regression coefficients. The incident rate ratios are simply the regression 
coefficients exponentiated, and give a measure of the relative risk. 
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. xi: poisson deaths gender, exp(personyears) ir 
 
Iteration 0:   log likelihood = -1354.3559   

Iteration 1:   log likelihood = -1354.3558   

 

Poisson regression                                Number of obs   =         66 

                                                  LR chi2(1)      =    3813.71 

                                                  Prob > chi2     =     0.0000 

Log likelihood = -1354.3558                       Pseudo R2       =     0.5847 

 

------------------------------------------------------------------------------ 

      deaths |        IRR   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      gender |   .4028301   .0062251   -58.84   0.000     .3908121    .4152176 

 personyears | (exposure) 

------------------------------------------------------------------------------ 

 
The female crude death rate is estimated to be about 40% of the rate for males (not 
adjusted for age). The difference in crude rates by gender suggests that we would want 
to adjust for sex when looking at mortality rates from motor vehicle accidents over 
time.  
The incidence rate ratio value of 0.40 is similar to the Standardised Mortality Ratio 
(SMR) (see Chapter 2) calculated internal to the data (using males as the standard 
population): 
 

)1728472(0.14...)3442406(6.24)3427986(5.27)3412518(3.30
100000139...267294319319

Pr
D  SMR

isi

i

++++
⋅+++++

==
∑

 

0.40326989SMR =  
 
The rate ratios from the Poisson model and the SMR calculated directly from the data 
will not in general be identical but when the observed rate ratios are similar among all 
age strata, the two approaches give similar estimates.16  
It is also important to see what effect age has on the risk of mortality from motor 
vehicle accidents for males and females. 
The command in Stata that permits categories is the ‘xi:’ command and an ‘i.’ is placed 
preceding the variable to be categorised. Age is categorised as 1=15–39 years,  
2=40–59 years, and 3=60+ years. By default, Stata assigns the lowest number as the 
reference category (in this case, the youngest age group, 15–39 years). Motor vehicle 
accidents in the reference category (15–39 years) are allocated a relative risk (RR) of 1. 
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. xi: poisson deaths i.agegroup if gender==0, exposure(personyears) ir 
 
i.agegroup        _Iagegroup_1-3      (naturally coded; _Iagegroup_1 omitted) 
 
Iteration 0:   log likelihood = -258.17584   
Iteration 1:   log likelihood = -258.15361   
Iteration 2:   log likelihood = -258.15361   
 
Poisson regression                                Number of obs   =         33 
                                                  LR chi2(2)      =    1343.69 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -258.15361                       Pseudo R2       =     0.7224 
 
------------------------------------------------------------------------------ 
      deaths |        IRR   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
_Iagegroup_2 |   .4700924   .0103104   -34.42   0.000     .4503127     .490741 
_Iagegroup_3 |   .7516159   .0168915   -12.71   0.000     .7192277    .7854627 
 personyears | (exposure) 
------------------------------------------------------------------------------ 

 
Compared to males aged 15–39 years, the death rates due to motor vehicle accidents in 
the 40–59 year age-group (RR=0.47) and in the 60+ year age-group (RR=0.75) are 
substantially and significantly lower.  
 
. xi: poisson deaths i.agegroup if gender==1, exposure(personyears) ir 
 
i.agegroup        _Iagegroup_1-3      (naturally coded; _Iagegroup_1 omitted) 
 
Iteration 0:   log likelihood = -191.27533   
Iteration 1:   log likelihood = -191.27041   
Iteration 2:   log likelihood = -191.27041   
 
Poisson regression                                Number of obs   =         33 
                                                  LR chi2(2)      =     466.17 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -191.27041                       Pseudo R2       =     0.5493 
 
------------------------------------------------------------------------------ 
      deaths |        IRR   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
_Iagegroup_2 |   .6508326   .0225772   -12.38   0.000     .6080529    .6966221 
_Iagegroup_3 |   1.432468   .0424945    12.12   0.000     1.351556    1.518225 
 personyears | (exposure) 
------------------------------------------------------------------------------ 

 
For females, we can see there is a significant decline in the relative risk of motor vehicle 
accidents in the 40–59 year age-group but the risk is higher in the 60+ year age-group 
compared to the reference category, the 15–39 year age group.  
These separate results for males and females suggest that injury mortality should be 
adjusted for both age and sex. This would require a multivariate Poisson regression 
model.  
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To adjust injury mortality rates by age and sex requires the generation of a mortality 
estimate in which the effects of age groups and gender are averaged to produce a 
contribution of each to the estimate of the year’s mortality. In other words, the 
mortality estimate is the average over all sexes and age-groups assuming equal 
weights (numbers of subjects) in each of the age/gender cells. 
The mortality estimate averaged over all sexes and ages can be calculated manually 
using the ‘lincom’ command once the Poisson model is in memory. 
Using the Poisson model adjusted for age and gender: 
. xi: poisson deaths c_year i.agegroup i.gender, exposure(personyears) 
 
i.agegroup        _Iagegroup_1-3      (naturally coded; _Iagegroup_1 omitted) 
i.gender          _Igender_0-1        (naturally coded; _Igender_0 omitted) 
 
Iteration 0:   log likelihood = -439.51166   
Iteration 1:   log likelihood = -439.37014   
Iteration 2:   log likelihood = -439.37014   
 
Poisson regression                                Number of obs   =         66 
                                                  LR chi2(4)      =    5643.68 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -439.37014                       Pseudo R2       =     0.8653 
 
------------------------------------------------------------------------------ 
      deaths |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      c_year |   -.040328   .0022304   -18.08   0.000    -.0446994   -.0359566 
_Iagegroup_2 |  -.6561679    .018512   -35.45   0.000    -.6924507   -.6198852 
_Iagegroup_3 |  -.0614925   .0176318    -3.49   0.000    -.0960501   -.0269348 
  _Igender_1 |  -.9148964   .0154665   -59.15   0.000    -.9452103   -.8845826 
       _cons |  -8.217637   .0144422  -569.00   0.000    -8.245944   -8.189331 
 personyears | (exposure) 
------------------------------------------------------------------------------ 

 
There are three age groups (15–39 years, 40–59 years and 60+ years) so each contributes 
1/3 to the effect.  We have two sexes, so each contributes 1/2.  The age- and sex- 
adjusted mortality rate for 1990 (i.e. c_year =0) can be calculated as follows: 
. lincom (_cons + (0.3333* _Iagegroup_2) + (0.3333* _Iagegroup_3) + (0.5* _Igender_1) + 
(0* c_year)) 
 
( 1)  .3333 [deaths]_Iagegroup_2 + .3333 [deaths]_Iagegroup_3 + .5 [deaths]_Igender_1 + 
[deaths]_cons = 0 
 
------------------------------------------------------------------------------ 
      deaths |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         (1) |  -8.914282   .0136229  -654.36   0.000    -8.940982   -8.887581 
------------------------------------------------------------------------------ 

 
. di exp(-8.914282)*100000 
13.445486 
 
. display exp(-8.940982)*100000, exp(-8.887581)*100000 
13.091242 13.80933 
[lower CI, upper CI] 
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The age- and sex- adjusted mortality rate in 1990 (baseline) is 13.4 [95% CI: 13.1 to -
13.8] per 100,000 persons.  
For 1995, it would be: 
. lincom (_cons + (0.3333* _Iagegroup_2) + (0.3333* _Iagegroup_3) + (0.5* _Igender_1) + 
(5* c_year)) 
 
( 1)  5 [deaths]c_year + .3333 [deaths]_Iagegroup_2 + .3333 [deaths]_Iagegroup_3 + .5 
[deaths]_Igender_1 + [deaths]_cons = 
>  0 
 
------------------------------------------------------------------------------ 
      deaths |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         (1) |  -9.115922   .0085614 -1064.77   0.000    -9.132702   -9.099142 
------------------------------------------------------------------------------ 

 
. di exp(-9.115922)*100000 
10.990194 
 
. display exp(-9.132702)*100000, exp(-9.099142)*100000 
10.807318 11.176166  
[lower CI, upper CI] 
The age- and sex- adjusted mortality rate in 1995 is 11.0 [95% CI: 10.8 to 11.2] per 
100,000 persons.  
 
The estimated age- and sex-adjusted mortality rates and 95% confidence intervals for 
each year can be obtained as a single table using the ‘adjust’ command once the 
Poisson model is in memory. The ‘exp ci’ option gives exponentiated linear predictions 
with 95% confidence intervals. The ‘nooffset’ option is specified because the offset or 
exposure (i.e. person-years) is not constant—there are different values for each year. 
The ‘replace’ option specifies that the data in memory are to be replaced with data 
containing one observation per cell corresponding to the table produced by the ‘adjust’ 
command (i.e 11 rows). 
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. quietly xi: poisson deaths c_year i.agegroup i.gender, exposure(personyears) 
[quietly suppresses screen output so results are not shown] 
. adjust, by(c_year) exp ci nooffset format(%9.8f) replace 
 
---------------------------------------------------------------------------------------- 
     Dependent variable: deaths     Equation: deaths     Command: poisson 
   Variables left as is: _Iagegroup_2, _Iagegroup_3, _Igender_1 
---------------------------------------------------------------------------------------- 
 
------------------------------------------------- 
   c_year |     exp(xb)           lb           ub 
----------+-------------------------------------- 
        0 |  0.00013445  [0.00013091  0.00013809] 
        1 |  0.00012914  [0.00012614  0.00013220] 
        2 |  0.00012403  [0.00012150  0.00012662] 
        3 |  0.00011913  [0.00011696  0.00012135] 
        4 |  0.00011442  [0.00011249  0.00011639] 
        5 |  0.00010990  [0.00010807  0.00011176] 
        6 |  0.00010556  [0.00010371  0.00010743] 
        7 |  0.00010138  [0.00009943  0.00010337] 
        8 |  0.00009738  [0.00009526  0.00009954] 
        9 |  0.00009353  [0.00009122  0.00009589] 
       10 |  0.00008983  [0.00008732  0.00009242] 
------------------------------------------------- 
     Key:  exp(xb)    =  exp(xb) 
           [lb , ub]  =  [95% Confidence Interval] 
 
The results are the same as those obtained manually using the ‘lincom’ command for 
1990 (c_year=0) and 1995 (c_year=5). The exponentiated linear predictions can be 
multiplied by 100,000 to give age- and sex- adjusted incidence rates per 100,000 persons 
(and the precursor estimates, collapsed variables of age-group and gender and any 
dummy variables dropped). 
 
. gen adjrate =  exp*100000 
. gen adjub =ub*100000 
. gen adjlb =lb*100000 
. drop exp lb ub gender agegroup _I* 
 
Save age- and sex-adjusted mortality data for 1990–2000 as a new file (with 11 rows) 
after firstly sorting by c_year in preparation for producing a graph of the data. 
. sort c_year 
. save "C:\DATA\poisson traffic injury adjust 1990-2000.dta" 
 
Return to the original data. 
. clear 
[and reopen the original saved data file of 66 rows] 
. gen c_year = year-1990 
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The estimated crude mortality rates and 95% confidence intervals for each year can be 
obtained using the Poisson model and the ‘adjust’ command.  
. quietly xi: poisson deaths c_year, exposure(personyears) 
. adjust, by(c_year) exp ci nooffset format(%9.8f) replace 
 
---------------------------------------------------------------------------------------- 
     Dependent variable: deaths     Equation: deaths     Command: poisson 
---------------------------------------------------------------------------------------- 
------------------------------------------------- 
   c_year |     exp(xb)           lb           ub 
----------+-------------------------------------- 
        0 |  0.00015994  [0.00015603  0.00016394] 
        1 |  0.00015317  [0.00014995  0.00015646] 
        2 |  0.00014669  [0.00014406  0.00014938] 
        3 |  0.00014048  [0.00013830  0.00014270] 
        4 |  0.00013454  [0.00013265  0.00013645] 
        5 |  0.00012885  [0.00012708  0.00013064] 
        6 |  0.00012340  [0.00012157  0.00012525] 
        7 |  0.00011817  [0.00011618  0.00012021] 
        8 |  0.00011317  [0.00011094  0.00011545] 
        9 |  0.00010839  [0.00010589  0.00011094] 
       10 |  0.00010380  [0.00010104  0.00010664] 
------------------------------------------------- 
     Key:  exp(xb)    =  exp(xb) 
           [lb , ub]  =  [95% Confidence Interval] 

 
The exponentiated linear predictions can be multiplied by 100,000 to give crude 
incidence rates per 100,000 persons (and the precursor estimates and collapsed 
variables dropped). 
 
. gen erate =  exp*100000 
. gen eub =ub*100000 
. gen elb =lb*100000 
. drop  exp lb ub gender agegroup 
 
Save the crude mortality data for 1990–2000 as a new file (with 11 rows) after firstly 
sorting by c_year in preparation for merging with other files. 
. sort c_year 
. save "C:\DATA\poisson traffic injury crude 1990-2000.dta" 
 
Return to the original data. 
. clear 
[and reopen the original saved data file of 66 rows] 
Use ‘collapse’ to condense the 66 rows to 11 rows to summarise the crude mortality 
rate for all persons for 1990–2000. 
 
. collapse (sum) deaths personyears, by (year) 
. gen rate = (deaths/personyears)*100000 
To rescale calendar year as a continuous variable, subtract the initial year (1990): 
. gen c_year = year-1990 
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The ‘merge’ command can be used to horizontally merge the variables in the two files 
on the matching variable, c_year, so that each observation from one data set is merged 
with the corresponding observation in the other data set. The crude mortality data file 
remains open and in use, while the ‘merge’ command imports data from the adjusted 
mortality data file. 
. sort c_year 
. merge c_year using "C:\DATA\poisson traffic injury crude 1990-2000.dta" 
 
As a check, Stata adds a system variable to the data set named _merge, which should 
have a value of 3 for each row if the observations in both files are correctly paired. 
Once checked, merge can be dropped. 
. drop _merge 
The file now contains the crude mortality rate and its trend line estimates predicted 
from the data using the Poisson model. 
 
The estimates for the age- and sex- adjusted injury mortality rate can be merged into 
the file as follows: 
. sort c_year 
. merge c_year using "C:\DATA\poisson traffic injury adjust 1990-2000.dta" 
. drop _merge 
 
The crude and age- and sex- adjusted mortality rates are now in one file, which allows 
them to be graphically depicted together according to year.  
 
To report the estimated trend in the age- and sex- adjusted injury mortality rate as 
annual percent change, the expected number of deaths is calculated for each year from 
the estimates predicted using the ‘adjust’ command. 
 . gen adjdeaths = adjrate*personyears/100000 
. save "C:\DATA\poisson traffic injury crude and adjust 1990-2000.dta" 
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The estimated trend is obtained from the fit of the Poisson regression model, and can 
be reported as annual per cent change as [ ]1)βexp(100 1 − . 

. poisson adjdeaths c_year, exposure(personyears) 
 

note: you are responsible for interpretation of non-count dep. variable 
 
Iteration 0:   log likelihood = -50.552467   
Iteration 1:   log likelihood = -50.552467  (backed up) 
 
Poisson regression                                Number of obs   =         11 
                                                  LR chi2(1)      =     280.06 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -50.552467                       Pseudo R2       =     0.7347 
 
------------------------------------------------------------------------------ 
     edeaths |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      c_year |   -.040328   .0024132   -16.71   0.000    -.0450578   -.0355982 
       _cons |  -8.914306   .0137182  -649.82   0.000    -8.941193   -8.887419 
 personyears | (exposure) 
------------------------------------------------------------------------------ 

 
. di 100*(exp(-.040328)-1) 
-3.9525648 
 
. di 100*(exp(-.0450578)-1), 100*(exp(-.0355982)-1) 
-4.4057773 -3.4972036 
[lower CI, upper CI] 
The average annual per cent change in age- and sex- adjusted mortality rate from 
traffic accidents during 1990–2000 is -4.0% [95% CI: -4.4% to -3.5%]. Changes over a 
longer period of time can similarly be estimated. For 10 years onwards from 1990, 
using the formula [ ]1)β10exp(100 1 −⋅  a decline of 33.2% is expected.  

. di 100*(exp(10*-.040328)-1) 
-33.1875 
If the estimated age- and sex- adjusted mortality rate in 1990 is 13.4 per 100,000 person-
years [. display exp(-8.914306)*100000], then the model predicts that the mortality rate 
would decline to 8.9 per 100,000 person-years in 2000. 
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Figure 3.13 shows the crude mortality rate and its estimated trend line from 1990–2000, 
and the age- and sex- adjusted mortality rates and its trend line (obtained using the 
‘adjust’ command). 
Both the crude and the age- and sex-adjusted models show a gradually flattening 
downward trend in fatalities from motor accidents during the decade. The values 
obtained from the adjusted model differ from those from the crude model because they 
are for a “what if?” hypothetical population in which each age-group and each sex is 
equally represented. 
The method used in this chapter to age- and sex-adjust is an example of internal 
standardisation. The road vehicle injury mortality data for males and females for each 
year of the decade is standardised using mortality data for the total population of 
Australia for the years under study. It is also possible to age- and/or sex-adjust using 
an external standard, that is, a population drawn from sources outside the analysis 
(e.g. the 2001 census of the Australian population). The advantages and disadvantages 
of internal versus external standardisation are detailed in Chapter 4. 
The absolute values of the adjusted rates should not be interpreted as measuring real 
risk in a population. Their value is that they can be compared validly with other rates 
adjusted in the same way, to assess changes or differences in rates, after allowing for 
differences in the age and sex composition of the populations under study. Hence, the 
trend shown in Figure 3.13 for the age- and sex-adjusted rate is a more valid estimate 
of change in road vehicle injury mortality risk than the trend in crude rates, because it 
removes confounding due to any changes in the age or gender distribution of the 
population over the years of study. 
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 Figure 3.13: Crude and age- and sex- adjusted motor vehicle injury mortality rates in 

Australia, 1990–2000 
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The ‘glm’ command will give the same results as the ‘poisson’ command, but provides 
a detailed output of the diagnostics of model fit. To demonstrate the use of the ‘glm’ 
command, we can specify Poisson regression by using the natural log as the link 
function and Poisson as the family distribution. The exposure (for adjustment of the 
counts to reflect person-time) is entered as the log person-years using the offset option. 
To display incidence rate ratios, we can use the option ‘eform’ which will exponentiate 
the regression coefficients. Using the original saved data file of 66 rows: 
. xi: glm deaths c_year i.agegroup i.gender, family(poisson) link(log) 
lnoffset(personyears) eform 
 
i.agegroup        _Iagegroup_1-3      (naturally coded; _Iagegroup_1 omitted) 
i.gender          _Igender_0-1        (naturally coded; _Igender_0 omitted) 
 
Iteration 0:   log likelihood = -482.68636   
Iteration 1:   log likelihood = -439.47428   
Iteration 2:   log likelihood = -439.37014   
Iteration 3:   log likelihood = -439.37014   
 
Generalized linear models                          No. of obs      =        66 
Optimization     : ML: Newton-Raphson              Residual df     =        61 
                                                   Scale parameter =         1 
Deviance         =   394.520583                    (1/df) Deviance =  6.467551 
Pearson          =  398.7112116                    (1/df) Pearson  =  6.536249 
 
Variance function: V(u) = u                        [Poisson] 
Link function    : g(u) = ln(u)                    [Log] 
Standard errors  : OIM 
 
Log likelihood   = -439.3701411                    AIC             =  13.46576 
BIC              =  138.9516438 
 
------------------------------------------------------------------------------ 
      deaths |        IRR   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      c_year |   .9604744   .0021422   -18.08   0.000     .9562849    .9646822 
_Iagegroup_2 |   .5188357   .0096047   -35.45   0.000     .5003484    .5380062 
_Iagegroup_3 |     .94036   .0165802    -3.49   0.000     .9084185    .9734247 
  _Igender_1 |   .4005581   .0061953   -59.15   0.000     .3885978    .4128865 
 personyears | (exposure) 
------------------------------------------------------------------------------ 

 

The results are the same as the Poisson model. 
. xi: poisson deaths c_year i.agegroup i.gender, exposure(personyears) ir 
 
i.agegroup        _Iagegroup_1-3      (naturally coded; _Iagegroup_1 omitted) 
i.gender          _Igender_0-1        (naturally coded; _Igender_0 omitted) 
 
Iteration 0:   log likelihood = -439.51166   
Iteration 1:   log likelihood = -439.37014   
Iteration 2:   log likelihood = -439.37014   
 
Poisson regression                                Number of obs   =         66 
                                                  LR chi2(4)      =    5643.68 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -439.37014                       Pseudo R2       =     0.8653 
 
------------------------------------------------------------------------------ 
      deaths |        IRR   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      c_year |   .9604744   .0021422   -18.08   0.000     .9562849    .9646822 
_Iagegroup_2 |   .5188357   .0096047   -35.45   0.000     .5003484    .5380062 
_Iagegroup_3 |     .94036   .0165802    -3.49   0.000     .9084185    .9734247 
  _Igender_1 |   .4005581   .0061953   -59.15   0.000     .3885978    .4128865 
 personyears | (exposure) 
------------------------------------------------------------------------------ 
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We should check whether the Poisson model is a reasonable fit for the data. With the 
model in memory, we use a goodness-of-fit test for the model. This tests whether there 
is any variation in the counts over and above what would be expected from a Poisson 
regression model. If the test is significant, then the data are overdispersed. The 
consequences of using a Poisson model with overdispersion is that the confidence 
intervals are too narrow, p-values are too small, and there is overstated statistical 
significance.8 
 
.poisgof 

         Goodness-of-fit chi2  =  394.5372 

         Prob > chi2(61)       =    0.0000 

The test is significant for overdispersion, so a Negative Binomial Distribution (NBD) 
regression model is a better alternative.  
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3.9 Negative Binomial Distribution regression 
The Negative Binomial Distribution (NBD) accommodates heterogeneity of risk so this 
model allows for overdispersion—resulting in higher p-values and wider CIs. 
 
. xi: nbreg deaths c_year i.agegroup i.gender, exposure(personyears) ir 
i.agegroup        _Iagegroup_1-3      (naturally coded; _Iagegroup_1 omitted) 
i.gender          _Igender_0-1        (naturally coded; _Igender_0 omitted) 
 
Fitting Poisson model: 
 
Iteration 0:   log likelihood = -439.51166   
Iteration 1:   log likelihood = -439.37014   
Iteration 2:   log likelihood = -439.37014   
 
Fitting constant-only model: 
 
Iteration 0:   log likelihood =  -438.2113   
Iteration 1:   log likelihood = -429.76719   
Iteration 2:   log likelihood = -416.01926   
Iteration 3:   log likelihood = -415.98642   
Iteration 4:   log likelihood =  -415.9864   
 
Fitting full model: 
 
Iteration 0:   log likelihood = -386.90879   
Iteration 1:   log likelihood = -385.26897  (not concave) 
Iteration 2:   log likelihood = -349.33947   
Iteration 3:   log likelihood = -334.73441   
Iteration 4:   log likelihood = -332.91503   
Iteration 5:   log likelihood = -332.90584   
Iteration 6:   log likelihood = -332.90583   
 
Negative binomial regression                      Number of obs   =         66 
                                                  LR chi2(4)      =     166.16 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -332.90583                       Pseudo R2       =     0.1997 
 
------------------------------------------------------------------------------ 
      deaths |        IRR   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      c_year |   .9591253   .0057162    -7.00   0.000     .9479869    .9703945 
_Iagegroup_2 |   .5480804   .0253926   -12.98   0.000     .5005045    .6001786 
_Iagegroup_3 |    1.02583   .0472495     0.55   0.580     .9372802    1.122747 
  _Igender_1 |   .4362934   .0167283   -21.63   0.000     .4047082    .4703436 
 personyears | (exposure) 
-------------+---------------------------------------------------------------- 
    /lnalpha |  -3.951466   .2106765                     -4.364385   -3.538548 
-------------+---------------------------------------------------------------- 
       alpha |   .0192265   .0040506                      .0127225    .0290555 
------------------------------------------------------------------------------ 
Likelihood-ratio test of alpha=0:  chibar2(01) =  212.93 Prob>=chibar2 = 0.000 

 
In the output above, the likelihood-ratio test is listed after the estimates of the 
parameters. In the NBD, the parameter ‘alpha’ (α) determines the degree of dispersion 
in the predicted counts.9 If α = 0, the NBD regression model reduces to the Poisson 
regression model, which is the key to testing for overdispersion.9 The likelihood-ratio 
test indicates there is significant evidence of overdispersion (G2=212.93, p<0.001) so the 
NBD regression model is preferred to the Poisson regression model. 
To test whether including gender in the model is worthwhile over the simpler model 
with calendar year only, we can use a likelihood ratio test. The log-likelihood is a 
measure of the fit of a model.4 It compares the log-likelihood of two models: a full 
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(larger) model, and a reduced (smaller) model, that is nested within the full model (i.e. 
it contains the same parameters). The likelihood ratio test statistic is calculated as two 
times the difference in log-likelihoods of the two models. The degrees of freedom for 
this test are found by subtracting the degrees of freedom used to generate each model. 
The larger the log-likelihood ratio test statistic, the smaller the associated probability 
and the better the fit.4 
. quietly xi: nbreg deaths c_year i.gender, exposure(personyears) ir 
. estimates store A 
. quietly nbreg deaths c_year, exposure(personyears) ir 
. lrtest A 
 

likelihood-ratio test                                  LR chi2(1)  =     64.91 

(Assumption: . nested in A)                            Prob > chi2 =    0.0000 

 
The test is significant on 1 degree of freedom, so gender is important to the model. 
To test whether including the age categories in the model is worthwhile over the 
simpler model with calendar year and gender only: 
 
. quietly xi: nbreg deaths c_year i.agegroup i.gender, exposure(personyears) ir 
. estimates store A 
. quietly xi: nbreg deaths c_year i.gender, exposure(personyears) ir 
. lrtest A 
 

likelihood-ratio test                                  LR chi2(2)  =     96.86 

(Assumption: . nested in A)                            Prob > chi2 =    0.0000 

 
The test is significant on 2 degrees of freedom, so age is important to the model. 
To test for interaction between age and year (i.e. whether there is evidence that age 
affects mortality risk differently in different years), we can generate an interaction term 
and test whether the model is improved with its inclusion using the likelihood ratio 
test. 
 
. quietly xi: nbreg deaths c_year i.agegroup i.agegroup*c_year gender, 
exposure(personyears) 
. est store A 
. quietly xi: nbreg deaths c_year i.agegroup i.gender, exposure(personyears) 
. lrtest A 
 

likelihood-ratio test                                  LR chi2(2)  =      0.95 

(Assumption: . nested in A)                            Prob > chi2 =    0.6209 
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The test is not significant, so the interaction term for age and year is not important to 
the model. 
Note: The syntax of the test for interaction between age and year can be simplified by 
leaving out the variables ‘age’ and ‘year’ when the interaction term ‘age*year’ is 
included in the model. This is because the variables ‘age’ and ‘year’ are dropped due to 
collinearity when the interaction term ‘age*year’ is specified. The example below 
demonstrates that using the simplified syntax gives the same results as the longer 
syntax in the example above.  
 
. quietly xi: nbreg deaths i.agegroup*c_year i.gender, exposure(personyears) 
. est store A 
. quietly xi: nbreg deaths c_year i.agegroup i.gender, exposure(personyears) 
. lrtest A 
 

likelihood-ratio test                                  LR chi2(2)  =      0.95 

(Assumption: A nested in .)                            Prob > chi2 =    0.6209 

 
To test for interaction between age and gender (i.e. whether there is evidence that age 
affects mortality risk differently for males compared to females), we can generate an 
interaction term and test it. 
 

. quietly xi: nbreg deaths c_year i.agegroup*gender, exposure(personyears) 

. est store A 

. quietly xi: nbreg deaths c_year i.agegroup i.gender, exposure(personyears) 

. lrtest A 
 

likelihood-ratio test                                  LR chi2(2)  =     97.71 

(Assumption: . nested in A)                            Prob > chi2 =    0.0000 

 
The test is significant, so the full model should include the interaction term for age and 
gender. 
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. xi: nbreg deaths c_year i.agegroup*gender, exposure(personyears) ir 
 
i.agegroup        _Iagegroup_1-3      (naturally coded; _Iagegroup_1 omitted) 
i.ageg~p*gender   _IageXgende_#       (coded as above) 
 
Fitting Poisson model: 
 
Iteration 0:   log likelihood = -326.98529   
Iteration 1:   log likelihood =  -286.1917   
Iteration 2:   log likelihood = -286.13113   
Iteration 3:   log likelihood = -286.13113   
 
Fitting constant-only model: 
 
Iteration 0:   log likelihood =  -438.2113   
Iteration 1:   log likelihood = -429.76719   
Iteration 2:   log likelihood = -416.01926   
Iteration 3:   log likelihood = -415.98642   
Iteration 4:   log likelihood =  -415.9864   
 
Fitting full model: 
 
Iteration 0:   log likelihood =  -384.5463   
Iteration 1:   log likelihood = -338.26829  (not concave) 
Iteration 2:   log likelihood = -305.56226   
Iteration 3:   log likelihood = -285.90909   
Iteration 4:   log likelihood = -284.16917   
Iteration 5:   log likelihood = -284.05275   
Iteration 6:   log likelihood = -284.05172   
Iteration 7:   log likelihood = -284.05172   
 
Negative binomial regression                      Number of obs   =         66 
                                                  LR chi2(6)      =     263.87 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -284.05172                       Pseudo R2       =     0.3172 
 
------------------------------------------------------------------------------ 
      deaths |        IRR   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      c_year |   .9601216   .0025958   -15.05   0.000     .9550473    .9652228 
_Iagegroup_2 |   .4747157   .0124038   -28.51   0.000     .4510167    .4996599 
_Iagegroup_3 |   .7568098   .0201228   -10.48   0.000     .7183799    .7972955 
      gender |   .3200503   .0082321   -44.29   0.000     .3043157    .3365985 
_IageXgend~2 |   1.386656    .063363     7.15   0.000     1.267866    1.516576 
_IageXgend~3 |   1.903146   .0804995    15.21   0.000     1.751733    2.067647 
 personyears | (exposure) 
-------------+---------------------------------------------------------------- 
    /lnalpha |  -6.809526   .6760116                     -8.134485   -5.484568 
-------------+---------------------------------------------------------------- 
       alpha |   .0011032   .0007458                      .0002933    .0041503 
------------------------------------------------------------------------------ 

Likelihood-ratio test of alpha=0:  chibar2(01) =    4.16 Prob>=chibar2 = 0.021 

Adjusting for age and sex in the NBD regression model, there is a small but significant 
decline in mortality from unintentional motor vehicle accidents over the years 1990–
2000 (RR=0.96; p<0.001). The mortality rate in those aged 40–59 years is about half that 
of the reference age-group 15–39 years (RR=0.47; p<0.001). The mortality rate in those 
aged 60+ years is about one-quarter less than the 15–39 year age-group (RR=0.76 
p<0.001). There is a strong protective effect of being female, with a markedly lower 
mortality from motor vehicle accidents compared to males (RR=0.32; p<0.001).  
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With the NBD model (with the interaction term) in memory, the expected count of 
deaths by age, gender and year can be computed. 
 
. predict edeaths 
(option n assumed; predicted number of events) 
 
The table below displays by gender and age-group—the sum of the deaths, the sum of 
the expected deaths predicted by the model, and person-years (going down the 
columns). The agreement between observed and expected counts is reasonable, and is 
better than when no interaction term is included in the NBD model (data not shown). 
The NBD model with the interaction term included seems to be a good model for these 
data. 
 
. table gender agegroup, c(sum deaths sum edeaths sum personyears) row col 
format(%9.0f) 
 

-------------------------------------------------------------- 

          |                        agegroup                         

   gender | 15-39 years  40-59 years    60+ years        Total 

----------+--------------------------------------------------- 

     male |        9081         2696         2532        14309 

          |        9088         2696         2532        14316 

          |    38535615     24336899     14295401     77167915 

          |  

   female |        2868         1170         1882         5920 

          |        2868         1170         1881         5919 

          |    38013741     23827474     17413903     79255118 

          |  

    Total |       11949         3866         4414        20229 

          |       11955         3866         4413        20234 

          |    76549356     48164373     31709304    156423033 

-------------------------------------------------------------- 

 



88 A guide to statistical methods for injury surveillance 

One of the most common methods of interpretation for count models (Poisson, NBD) is 
looking at the factor change in the rate.9 The option ‘ir’ computes these coefficients, but 
alternatively they can be displayed (with more detail) using the ‘listcoef’ command. 
Re-running the NBD model so that it is in memory, use ‘listcoef’ to compute the 
coefficients: 
 
. quietly xi: nbreg deaths c_year i.age*gender, exposure(personyears) ir 
. listcoef year, help 
 
nbreg (N=66): Factor Change in Expected Count  
 
 Observed SD: 244.41971 
 
---------------------------------------------------------------------- 
      deaths |      b         z     P>|z|    e^b    e^bStdX      SDofX 
-------------+-------------------------------------------------------- 
      c_year |  -0.04070  -15.052   0.000   0.9601   0.8784     3.1865 
-------------+-------------------------------------------------------- 
    ln alpha |  -6.80953 
       alpha |   0.00110   SE(alpha) = 0.00075   
---------------------------------------------------------------------- 
 LR test of alpha=0: 4.16     Prob>=LRX2 = 0.021 
---------------------------------------------------------------------- 
       b = raw coefficient 
       z = z-score for test of b=0 
   P>|z| = p-value for z-test 
     e^b = exp(b) = factor change in expected count for unit increase in X 
 e^bStdX = exp(b*SD of X) = change in expected count for SD increase in X 
   SDofX = standard deviation of X 

 
The coefficient can be interpreted as follows: Each year the expected number of deaths 
decreases by a factor of 0.96, holding all other variables constant. 
 
To compute per cent change, we add the option ‘percent’. 
. listcoef year, percent help 
 
nbreg (N=66): Percentage Change in Expected Count  
 
 Observed SD: 244.41971 
 
---------------------------------------------------------------------- 
      deaths |      b         z     P>|z|      %      %StdX      SDofX 
-------------+-------------------------------------------------------- 
      c_year |  -0.04070  -15.052   0.000     -4.0    -12.2     3.1865 
-------------+-------------------------------------------------------- 
    ln alpha |  -6.80953 
       alpha |   0.00110   SE(alpha) = 0.00075   
---------------------------------------------------------------------- 
 LR test of alpha=0: 4.16     Prob>=LRX2 = 0.021 
---------------------------------------------------------------------- 
       b = raw coefficient 
       z = z-score for test of b=0 
   P>|z| = p-value for z-test 
       % = percent change in expected count for unit increase in X 
   %StdX = percent change in expected count for SD increase in X 
   SDofX = standard deviation of X 

 
The coefficient can be interpreted as follows: Each year the expected number of deaths 
decreases by 4.0%, holding all other variables constant. 
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This chapter demonstrates that the NBD model is a better fit for the motor vehicle 
injury mortality data than a Poisson model due to data being overdispersed. The 
method for internal standardisation as shown in Chapter 3.8 (and external 
standardisation as shown in Section 4.6.2) can easily be applied to a NBD model by 
replacing the ‘poisson’ command with ‘nbreg’, as follows: 
 
. xi: nbreg deaths c_year i.agegroup i.gender, exposure(personyears) 
 
By using the ‘adjust’ command once the NBD model is in memory, estimated age- and 
sex- adjusted mortality rates and their 95% confidence intervals will be calculated (as 
per Figure 3.13). 

 

3.10 Modelling SMRs 
Instead of a measure of person-years at risk as the exposure in the model, we could use 
the predicted number of deaths to enable us to model the standardised mortality ratio 
(SMR). The predicted number of deaths can be derived from external data.4, 17 The 
model would include the observed number of deaths as the counts, the exposure 
would be the expected number of events from the external data, and the measure 
would be the natural log(observed/expected), that is, ln(SMR). 
As an example of external standardisation, we could use the age- and sex- specific 
mortality rates for road traffic injury for the World Health Organisation member States 
in 2002 to predict the expected number of deaths in each group [see equation (9) in 
Section 2.6.2].18 This would allow international comparisons of mortality from motor 
vehicle accidents. If we were looking at mortality rates for one State, and wanted to 
compare it with the rates for all Australia, we could use the age-specific death rates for 
all Australians to predict the expected numbers of deaths for males and females by age 
group. If the aim was to examine time trends, special consideration would be required 
to decide which year(s) to use as the standard, but a common choice would be the 
census year ending in one (i.e. 1991, 2001 etc.). 
 

3.11 Artefacts of measurement 
A consideration when interpreting trends over time must be whether any artefacts of 
the statistical measurement process exist. Improvements in case ascertainment for 
morbidity and mortality data over time could contribute to an observed increase in 
trend. Likewise, changes to coding practice may mean some causes of morbidity and 
mortality are coded differently to previous years and this could contribute to an 
erroneous increase or decrease in trend over time. The effect of misclassification bias on 
trend analysis must also be considered, as misclassification of some types of injury is 
likely to occur. For example, a certain proportion of road traffic deaths are likely to be 
attributable to suicide.  
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3.12 Conclusion 
This section has demonstrated that a Pearson’s chi-square is a suitable test for 
difference for nominal (unordered) data as it is able to test for departures from the null 
hypothesis that can occur in various ways, but is not suitable as a test for trend for 
ordered data. For dose-response or trend data, we need to use different statistics. 
Suitable chi-squared tests are the Cochran-Armitage test for trend or Mantel-Haenszel 
test for trend. Sribney3 evaluated various tests for trend (including Mantel-Haenszel 
chi-square test for trend, Pearson’s correlation, Cochran-Armitage test [‘ptrend’], and 
‘nptrend’ command) and demonstrated that these tests are simply a Pearson’s 
correlation coefficient (a test suitable to determine the correlation between two 
variables and its significance). Although these tests can detect a linear trend, they are 
not powerful against non-linear trends.3 In these instances, the Pearson’s chi-square 
statistic can detect the association with more power. 
Regression procedures are more powerful tests of association than chi-square statistics 
and allow confounders and effect modifiers to be included in the model and adjusted 
for simultaneously. Regression procedures can test for non-linear trends (e.g. 
curvilinear). Ordinary Least Squares regression should be avoided for trend analysis as 
it assumes homogeneity of variance in the residuals (errors) and can be biased for 
count data due to the assumptions that the data are normally distributed. Variance-
weighted least squares regression is preferable to Ordinary Least Squares as it accounts 
for non-homogeneity of variance and can be used to measure trend over time for 
directly standardised mortality rates (if numerator and denominator data are not 
available). For binary data, logistic regression is a powerful test for trend. Count data 
often follow a Poisson distribution, so if numerator and denominator data are 
available, Poisson analysis is most appropriate, and can also be used to model 
Standardised Mortality Ratios. However, if the data prove to be overdispersed, 
Negative Binomial Distribution regression is a more appropriate method. 
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4 Regression analyses of 
mortality rates 

4.1 Analysis of mortality rates 
A common type of observational study uses population data to assess the mortality 
rates which are specific to certain groups. An example is a comparison of the mortality 
rates from suicide over calendar year by gender. A related type of observational study 
involves an exposure or treatment that is more prevalent in some regions or groups 
than in others. The relationship between the extent of exposure and the outcome is 
studied in order to assess the effects of exposure. Examples include (i) a study of 
socioeconomic determinants of mortality, and (ii) studies which examine mortality 
rates from a particular cause in various countries and their relationship to 
exposure/environmental factors. 
Statisticians have pointed out the need for caution in regression analyses of 
standardised rates that have (age-specific) population denominators in both dependent 
and independent variables.1 A common mistake is to undertake the analysis when the 
outcome variables used in the analyses, such as mortality rates in various regions, have 
been age-adjusted, but the predictor variables have not been age-adjusted. If mortality 
is adjusted for age in regression analyses, then any covariates (e.g. income, co-
morbidities) must be adjusted for age as well. 
The use of crude regional death rates as the outcome variable, with crude covariates 
and age as predictors, can avoid the problems encountered with regression of age-
adjusted mortality rates. 
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4.2 Age-adjustment and regression 
 
There is a need for caution when performing regression analysis of age-adjusted rates. 
If we designate: 
 
Y  = an age- and state-specific mortality rate 
X2  = the corresponding age 
X1  = the per capita personal income (a variable that varies with both age and state) 
 

Suppose we wish to estimate the regression coefficient, 21 * XYXβ , of Y on X1 in the 
multiple regression with two predictors, X1 and X2. The least squares estimate of this 
coefficient may be found by, first, regressing Y on X2 and calculating the residuals Y*X2 
(to age-adjust mortality), then regressing X1 on X2 and calculating the residual X1*X2 (to 
age-adjust income), and finally calculating the estimate of 21 * XYXβ as the estimated 
slope in the regression of the first set of residuals Y*X2 on the second X1*X2. 1 

To find the least squares estimate of 21 * XYXβ , the age-adjusted mortality, Y*X2, 
should be regressed on age-adjusted income, X1*X2. Often, however, age-adjusted 
mortality, Y*X2, is regressed on income, X1. This mistaken approach will give a biased 
estimate, unless income, X1, and age, X2, are statistically unrelated. 1 
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4.3 Multivariate methods of age-
standardisation 

4.3.1 Biased methods 
The methods that generally lead to a biased least squares estimate of 21 * XYXβ  are: 

 
1. Weighted regression of age-adjusted rates on crude predictors 
2. Weighted regression of age-adjusted rates on age and crude predictors 
3. Weighted regression of age-specific rates on crude predictors 
 
Method 1 is a popular technique, but should be avoided except in situations in which 
the bias can be shown to be negligible for the purposes of the study. Method 2 can only 
produce an unbiased least squares estimate under restrictive conditions on the 
relationship between adjusted and unadjusted covariates which limits its general 
applicability. 1 In addition to it leading to a biased least squares estimate, Method 3 
would not suit the format of data presentation for NISU reports. For further discussion 
of why these three methods lead to biased estimates, see Rosenbaum et al. 1 

4.3.2 Unbiased methods 
There are a number of methods that will give an unbiased least squares estimate of 

21 * XYXβ . These are: 

 
1. Weighted regression of crude response rates on age and crude predictor averages 
2. Weighted regression of age-adjusted rates on age-adjusted predictors 
3. Weighted regression of age-specific rates on age and on age-specific predictor 

averages 
4. Regression of the responses of individuals on the age of individuals and the 

predictors describing individuals 
 
For the purposes of this report, we will concentrate on Methods 1 (internal 
standardisation) and 2 (external standardisation), which have the most practical 
application for multivariate analyses in NISU reports. Method 3 does not suit the 
format of data used in NISU reports. Method 4 does not suit the format of NISU 
reports and is not commonly used due to restrictions in obtaining the necessary data 
from official sources e.g. NISU data are limited to aggregate population data and 
usually lack person-level data for non-cases. 
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Two types of standard population can be chosen for age-adjustment: external and 
internal. Usually an internal standard consists of combining the groups to be compared 
to form one standard group, but another valid approach is to select a specific group 
among those sampled to serve as a standard (e.g. males could be chosen). The internal 
‘standard’ group is used as a source of age-specific counts (direct standardisation) or 
rates (indirect standardisation).2 For external standardisation, a population external to 
the study cohort is used as a source of age-specific counts (direct standardisation) or 
rates (indirect standardisation).  

4.4 Method 1: Internal standardisation 

Regression with crude rates and crude covariate averages, 
including age 
 
This method uses crude age (a pooled combination of all study groups) to internally 
standardise each group in order to make comparisons between them. As an example, if 
the study populations consisted of Indigenous and non-Indigenous Australians, this 
method would internally standardise each study population (Indigenous yes or no) to 
the total population of Australia for the year(s) of the study. The method of internal 
standardisation has a strong following due to its relative simplicity and intuitive 
appeal.3 By regressing crude rates on the independent predictor variable while 
simultaneously adjusting for age (added to the model as a covariate), age-adjusted 
mortality rates are generated. Internal standardisation can be preferable to external 
standardisation (Method 2) if there are questions about the appropriateness of using a 
particular external standard population. 3 
A limitation of internal standardisation is that it tends to yield mildly conservative 
tests and estimates in typical practice.3 The conservatism increases if there is a high 
degree of association between the stratum-variables (e.g. age, year) and the exposures 
(i.e. if the stratification variables strongly confound the exposure-disease relationship).3 
In general, the analysis of crude rates with age as a covariate can lead to unbiased 
estimates, and the simplicity of this method can make it a good choice of method to 
use. 
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4.5 Method 2: External standardisation 

Regression with age-adjusted rates and age-adjusted covariate 
averages 
 
This method relies on standard weights (direct standardisation) or standard rates 
(indirect standardisation) that are external to the study cohort in order to make 
comparisons between study groups. External standards are conventionally chosen 
from large populations published for use in the adjustment process.2 An example 
would be the regression of age-standardised rates for Indigenous and non-Indigenous 
Australians by year, with rates directly standardised to the total Australian population 
in the census year 2001. For indirect standardisation, SMRs can be modelled externally 
as shown in the example below. Any covariates entered into the model that are age-
specific (e.g. income, comorbidities) would need to be age-adjusted. A consideration 
before deciding to use Method 2 is the appropriateness of the particular standard 
population. 3  
Another potential limitation is that although age-adjusted mortality rates can be 
calculated easily, age-adjusting covariates (such as income) may not be a 
straightforward process. Likewise, if the data is derived from published sources, age-
adjusted mortality rates are commonly published, but it is uncommon to find 
covariates that have been age-adjusted before tabulation. 
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4.6 Direct standardisation by Methods 1 and 2 

4.6.1 Internal standardisation 
Chapter 3.8 demonstrates internal standardisation using the direct method to adjust 
simultaneously for age and sex in motor vehicle injury mortality rates (see Figure 3.13). 
This method can be reduced to adjustment on one variable only e.g. rates are often 
standardised by adjusting for age alone (see Chapter 2). 

4.6.2 External standardisation 
To demonstrate external standardisation, we will use the data from Chapter 3.8 on 
deaths due to unintentional motor vehicle traffic injury in Australia (1990–2000) and 
standard population weights from the 2001 census of the Australian population (Table 
4.1).4 We have opted to perform age- and sex- standardisation to be consistent with the 
analyses in Chapter 3.8, but this method can be simplified to age-adjustment alone.  
[As an aside, the NBD model was shown in Chapter 3.9 to be a better fit for the motor 
vehicle injury mortality data. However, we have opted to use the Poisson regression 
model here simply to be consistent with the analyses in Chapter 3.8. The model can be 
changed from Poisson to NBD by replacing the ‘poisson’ command with ‘nbreg’.] 
 

Table 4.1: Standard weights from the 2001 census of the Australian population. 

 Standard population in each of the age bands, divided by the total standard population 

 Males Females Persons 

Age range (years) (Psi) (wsi) (Psi) (wsi) (Psi) (wsi) 

15–39 3,520,707 0.22823 3,500,350 0.22691 7,021,057 0.45514 

40–59 2,574,919 0.16692 2,572,508 0.16676 5,147,427 0.33368 

60+ 1,490,654 0.09663 1,766,904 0.11454 3,257,558 0.21117 

Total 7,586,280 0.49178 7,839,762 0.50822 15,426,042 1.00000 

 
Open the motor vehicle traffic injury data file of 66 rows. 
 
To perform age- and sex- standardisation, the age- and sex- specific rates for the study 
populations (each year of motor vehicle traffic injury, 1990–2000) are multiplied by the 
age- and sex- specific weights of the 2001 Australian standard population.  
[As an aside, to perform age-standardisation alone, the age-specific rates of the study 
populations are multiplied by the age-specific weights for persons in the 2001 
Australian standard population.] 
 
Firstly, create a variable which is the age- and sex- specific weight of the 2001 
Australian standard population that corresponds to each age- and sex- stratum in the 
study population. Full decimal places are used for weighting to reduce rounding error. 
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. gen dirweights =. 

. replace dirweights = 0.228231389 if agegroup==1 & gender==0 

. replace dirweights = 0.166920264 if agegroup==2 & gender==0 

. replace dirweights = 0.096632305 if agegroup==3 & gender==0 

. replace dirweights = 0.226911738 if agegroup==1 & gender==1 

. replace dirweights = 0.166763970 if agegroup==2 & gender==1 

. replace dirweights =0.114540334 if agegroup==3 & gender==1 
 
The stratifying variables (year, age-group and gender) must be sorted on prior to the 
use of the analytical commands, so that the age- and sex- adjusted rates for each strata 
are calculated correctly. The data can be sorted by either using the ‘sort’ command, or 
by using the ‘collapse’ command, as follows:   
 
. sort year agegroup gender 
 
OR 
 
. collapse (sum) deaths personyears, by(year agegroup gender dirweights) 
 
The age- and sex- specific rates for each study population (e.g. 1990, 2000, 2001 etc) are 
calculated. 
 
. gen rate = (deaths/personyears)*100000 
 
The age- and sex- specific rates for each year are multiplied by the corresponding age- 
and sex- specific weights in the 2001 Australian standard population. 
 
. gen adjrate2001 = rate*dirweights 
 
For each year of the study, the directly standardised rate is calculated by summing the 
‘adjrate2001’ variable for its component age- and sex-strata [see equation (1) in Section 
2.4.2]. The ‘collapse’ command sums the data by collapsing the 66 rows (11 rows for 
males by 3 age-groups, and the same for females) to 11 rows to summarise the age- and 
sex- adjusted mortality rate for all persons for 1990–2000. 
 
. collapse (sum) adjrate2001 deaths personyears, by(year) 
 
For each year of the study, the number of deaths for all persons can be adjusted (using 
the directly standardised rate calculated for the corresponding year). This enables a 
Poisson regression model to be fitted to the data to produce estimated age- and sex- 
adjusted mortality rates and their 95% confidence intervals for each year. 
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. gen deaths2001 =  adjrate2001* personyears/100000 
 
Calendar year is entered as a continous variable, scaled by subtracting the initial year 
(1990) so that the intercept can be interpreted as the log of the baseline mortality rate in 
the first year (1990) (see Chapter 3.8 for detail). 
 
. gen c_year= year-1990 
 
The estimated trend line for the age- and sex-adjusted injury mortality rate and its 95% 
confidence intervals for each year can be obtained using the Poisson model and the 
‘adjust’ command. 
 
. xi: quietly poisson deaths2001 c_year, exp(personyears) 
[quietly suppresses screen output so results are not shown] 
. adjust, by(c_year) exp ci nooffset format(%9.8f) replace 
 
The exponentiated linear predictors can be multiplied by 100,000 to give age- and sex-
adjusted incidence rates per 100,000 persons (and the precursors dropped). 
 
. gen rate2001 = exp*100000 
. gen ub2001 = ub*100000 
. gen lb2001 = lb*100000 
. drop exp lb ub 
 
Save the externally standardised age- and sex-adjusted mortality data for 1990–2000 as 
a new file (with 11 rows) after firstly sorting by c_year in preparation for merging with 
other files. 
 
. sort c_year 
. save "C:\DATA\poisson traffic injury external adjust 1990-2000.dta" 
. clear 
 
Return to the data file created in Chapter 3.8 which contains both the crude and 
internally standardised age- and sex- adjusted injury mortality rate estimates.  
 
. use "C:\DATA\poisson traffic injury crude and adjust 1990-2000.dta" 
. sort c_year 
 
The ‘merge’ command can be used to horizontally merge the variables in the two files 
on the matching variable, c_year, so that the observations from one data set are merged 
with the corresponding observations in the other data set. The combined crude and 
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internally age- and sex- standardised file remains open and in use, while the ‘merge’ 
command imports data from the externally age- and sex- standardised file. 
 
. merge c_year using "C:\DATA\poisson traffic injury external adjust 1990-2000.dta" 
 . save "C:\DATA\poisson traffic injury crude internal & external adjust 1990-2000.dta" 
 
Figure 3.14 shows the crude mortality rate and its estimated trend line from 1990–2000, 
and the trend line obtained using internal and external age- and sex- adjustment of the 
mortality rate. The estimates of the trend line for the externally age- and sex- adjusted 
mortality rate are slightly lower than the crude mortality rate but the values converge 
in the latter years of the decade.  This is as to be expected given that the population 
used for external standardisation was the 2001 census of the Australian population.  
The estimates of the trend line for the internally age- and sex- adjusted mortality rate 
are lower than those for external standardisation. 
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 Figure 3.14: Crude and internally and externally age- and sex- adjusted motor vehicle 

injury mortality rates in Australia, 1990–2000 
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4.7 Indirect standardisation by Methods 1 and 2 

4.7.1 Internal standardisation 
To demonstrate internal standardisation, we will use ‘Grouped data from the Montana 
Smelter Workers Study’.5 The dataset consists of respiratory cancer deaths and person-
year denominators classified by age, calendar period, period of hire and estimated 
years of exposure to arsenic. For further information on the study and the analyses, 
refer to Breslow and Day.3 
We will use Poisson regression to adjust respiratory cancer deaths for age and calendar 
period and look only at period of hire prior to 1925 (when the arsenic exposure was 
highest).  
 
. xi: poisson   resp_ca  i.age i.calendar if  periodhire==1, exp(personyrs) 
 
i.age             _Iage_1-4           (naturally coded; _Iage_1 omitted) 
i.calendar        _Icalendar_1-4      (naturally coded; _Icalendar_1 omitted) 
 
Iteration 0:   log likelihood = -87.515486   
Iteration 1:   log likelihood = -87.470217   
Iteration 2:   log likelihood = -87.470092   
Iteration 3:   log likelihood = -87.470092   
 
Poisson regression                                Number of obs   =         52 
                                                  LR chi2(6)      =      62.86 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -87.470092                       Pseudo R2       =     0.2643 
 
------------------------------------------------------------------------------ 
     resp_ca |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
     _Iage_2 |   1.054763   .5501958     1.92   0.055    -.0236011    2.133127 
     _Iage_3 |   1.870064   .5290349     3.53   0.000      .833175    2.906954 
     _Iage_4 |   1.794457   .5461125     3.29   0.001     .7240963    2.864818 
_Icalendar_2 |   .6323841    .256347     2.47   0.014     .1299532    1.134815 
_Icalendar_3 |   .8435844   .2687129     3.14   0.002     .3169168    1.370252 
_Icalendar_4 |   1.039504   .3287077     3.16   0.002     .3952485    1.683759 
       _cons |  -7.473619   .5093356   -14.67   0.000    -8.471898   -6.475339 
   personyrs | (exposure) 
------------------------------------------------------------------------------ 

 
The expected numbers of respiratory cancer deaths are calculated for each exposure 
category by multiplying the pooled rates by the appropriate number of person-years 
and summing counts for each exposure category. 
 
. predict edeaths 
(option n assumed; predicted number of events) 
 
To tabulate observed and expected numbers for arsenic exposure levels: 
. table  periodhire arsenic if  periodhire==1, c(sum  resp_ca sum  edeaths sum 
personyrs) col format(%9.1f) 
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To determine relative risks for arsenic exposure levels: 
. xi: poisson   resp_ca  i.arsenic i.age i.calendar if  periodhire==1, exp(personyrs) ir 
 
These results are tabulated below: 

Table 4.2: Dose-response analysis of respiratory cancer deaths among Montana smelter 
workers, based on internal standardisation. 

 Cumulative years of moderate/heavy arsenic exposure 

Workers employed before 1925 < 1 year 1–4 years 5–14 years 15+ years Total 

      

No. of observed deaths 51 17 13 34 115 

No. of expected deaths  

(adjusted for age and calendar period) 

77.5 10.6 10.2 16.8 115.0 

Relative risk  

(using ratio of Observed/Expected) 

1.00 2.44 1.95 3.08  

 
The results in this table using Stata statistical software are similar to those in Table 3.11 
in Breslow and Day.3 Compare these results using internal standardisation to Table 4.4 
in the next section which uses external standardisation. 

4.7.2 External standardisation 
To demonstrate external standardisation, we will use ‘Grouped data from the Montana 
Smelter Workers Study’5 and standard population rates (Table 4.3 [abridged from 
Table 3.2 in Breslow and Day3]).  

Table 4.3: Standard respiratory cancer death rates used for comparative analyses 
of the Montana smelter workers data. 

 No. of deaths per 1,000 person-years Calendar period 

Age range (years) 1938–1949 1950–1959 1960–1969 1970–1977 

40–49 0.14817 0.21896 0.28674 0.37391 

50–59 0.47412 0.80277 1.05824 1.25469 

60–69 0.73136 1.55946 2.33029 2.90461 

70–79 0.73207 1.63585 2.85724 4.22945 

 
Remembering that: 
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To generate expected deaths we need to multiply the standard respiratory cancer death 
rates for each age- and calendar- stratum by the stratum’s person-years denominator 
and then sum them for each exposure group. In Stata: 
 
gen istdrate =. 
replace  istdrate=0.14817 if age==1 & calendar==1 
replace  istdrate=0.21896 if age==1 & calendar==2 
replace  istdrate=0.28674 if age==1 & calendar==3 
replace  istdrate=0.37391 if age==1 & calendar==4 
replace  istdrate=0.47412 if age==2 & calendar==1 
replace  istdrate=0.80277 if age==2 & calendar==2 
replace  istdrate=1.05824 if age==2 & calendar==3 
replace  istdrate=1.25469 if age==2 & calendar==4 
replace  istdrate=0.73136 if age==3 & calendar==1 
replace  istdrate=1.55946 if age==3 & calendar==2 
replace  istdrate=2.33029 if age==3 & calendar==3 
replace  istdrate=2.90461 if age==3 & calendar==4 
replace  istdrate=0.73207 if age==4 & calendar==1 
replace  istdrate=1.63585 if age==4 & calendar==2 
replace  istdrate=2.85724 if age==4 & calendar==3 
replace  istdrate=4.22945 if age==4 & calendar==4 
gen iedeaths =  istdrate*personyrs/1000 
 
To tabulate observed and expected numbers for arsenic exposure levels: 
. table  periodhire arsenic if  periodhire==1, c(sum  resp_ca sum  iedeaths sum 
personyrs) col format(%9.1f) 
 
To determine the SMRs for each level of arsenic exposure, exponentiate the regression 
cooefficents: 
. bysort  arsenic: poisson   resp_ca  if  periodhire==1, exp(iedeaths) 
. di exp(.8650619)*100 
. di exp( 1.752841)*100 
. di exp( 1.551161)*100 
. di exp( 2.034669)*100 
 



104 A guide to statistical methods for injury surveillance 

To determine relative risks for arsenic exposure levels by defining the exposure as the 
expected number of events from the external data: 
. xi: poisson   resp_ca  i.arsenic if  periodhire==1, exp(iedeaths) ir 
 
These results are tabulated below: 

Table 4.4: Dose-response analysis of respiratory cancer deaths among Montana smelter 
workers, based on external standardisation. 

 Cumulative years of moderate/heavy arsenic exposure 

Workers employed before 1925 < 1 year 1–4 years 5–14 years 15+ years Total 

      

No of observed deaths 51 17 13 34 115 

No. of expected deaths (standard 
population) 

21.5 3.0 2.8 4.4 31.6 

SMR (%) 237.5 577.1 471.7 765.0  

Relative risk (ratio of SMRs) 1.00 2.43 1.99 3.22  

 
The relative risks obtained using external standardisation are similar to those obtained 
from internal standardisation (and similar to those obtained by Breslow and Day3)  
(Table 4.2). However, external standardisation gives values that are slightly more 
extreme with a steeper dose-response relationship (for the highest exposure category 
the relative risk is 3.10 for internal standardisation vs 3.22 for external standardisation). 
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4.8 Comparing Methods 1 and 2 
Internal standardisation by Method 1 can avoid the problems caused by the non-
comparability of external standard rates, and its simplicity can provide an advantage 
over Method 2. However, while the ability of multivariate modelling to accommodate 
the internal estimation of baseline rates is desirable, incorporation of external rates may 
be advantageous in some circumstances.3 One advantage is that it provides an overall 
measure of how the baseline cohort rates compare with those for the general 
population. If the external standard population chosen is commonly used, it may allow 
comparisons with other studies. 
Method 2 is generally more complicated to perform correctly, and requires a more 
thorough critical appraisal of the multivariate model. For indirect standardisation, non-
comparability of external standard rates may mean that the relative risk estimates (i.e. 
ratios of the SMRs using the first exposure level as baseline) for different exposure 
groups will fail to summarise adequately the stratum-specific rate ratios.3 However, 
the process of model fitting encourages the investigator to evaluate the assumptions of 
proportionality that are essential in order that the estimated parameters have the 
intended interpretation.3 The usual goodness-of-fit machinery may be applied to 
validate these assumptions. Additional interaction terms may also be incorporated into 
the model to account for confounding by any of the stratification variables. In instances 
where confounding has occurred as a result of using external standard rates, 
incorporating interaction terms to adjust for age, year and age x year interactions in 
externally estimated models can yield identical results to internally estimated models 
(see Section 4.8 of Breslow and Day).3 

4.9 Conclusion 
For multivariate analysis, it is valid to use either internal standardisation (where age-
adjustment occurs through weighting by a pooled combination of all study groups) or 
external standardisation (where age-adjustment occurs using an external standard 
population) by either direct or indirect standardisation. If external standardisation is 
the method chosen, then the covariates in the model must also be adjusted for age, in 
order to yield unbiased estimates of the parameters of the model. The methods of 
internal and external standardisation have different strengths and weaknesses. The 
simplicity of internal standardisation (the analysis of crude rates with age as a 
covariate), can make this method more practical to use.  
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Appendix 

Appendix 1: Lower and upper 95% confidence limit factors for a death rate (age-adjusted, 
crude or age-specific) based on a Poisson variable of 1 through to 99 deaths (Di) 

Di 
Lower confidence 

factor 
Upper confidence 

factor Di 
Lower confidence 

factor 
Upper confidence 

factor 

1 0.02532  5.57164 51 0.74457 1.31482 

2 0.12110  3.61234 52 0.74685 1.31137 

3 0.20622  2.92242 53 0.74907 1.30802 

4 0.27247  2.56040 54 0.75123 1.30478 

5 0.32470  2.33367 55 0.75334 1.30164 

6 0.36698  2.17658 56 0.75539 1.29858 

7 0.40205  2.06038 57 0.75739 1.29562 

8 0.43173  1.97040 58 0.75934 1.29273 

9 0.45726  1.89831 59 0.76125 1.28993 

10 0.47954  1.83904 60 0.76311 1.28720 

11 0.49920  1.78928 61 0.76492 1.28454 

12 0.51671  1.74680 62 0.76669 1.28195 

13 0.53246  1.71003 63 0.76843 1.27943 

14 0.54671  1.67783 64 0.77012 1.27698 

15 0.55969  1.64935 65 0.77178 1.27458 

16 0.57159  1.62394 66 0.77340 1.27225 

17 0.58254  1.60110 67 0.77499 1.26996 

18 0.59266  1.58043 68 0.77654 1.26774 

19 0.60207  1.56162 69 0.77806 1.26556 

20 0.61083  1.54442 70 0.77955 1.26344 

21 0.61902  1.52861 71 0.78101 1.26136 

22 0.62669  1.51401 72 0.78244 1.25933 

23 0.63391  1.50049 73 0.78384 1.25735 

24 0.64072  1.48792 74 0.78522 1.25541 

25 0.64715  1.47620 75 0.78656 1.25351 

26 0.65323  1.46523 76 0.78789 1.25165 

27 0.65901  1.45495 77 0.78918 1.24983 

28 0.66449  1.44528 78 0.79046 1.24805 

29 0.66972  1.43617 79 0.79171 1.24630 

30 0.67470  1.42756 80 0.79294 1.24459 

Continued 
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Appendix 1 (continued): Lower and upper 95% confidence limit factors for a death rate (age-
adjusted, crude or age-specific) based on a Poisson variable of 1 through to 99 deaths (Di) 

Di 
Lower confidence 

factor 
Upper confidence 

factor Di 
Lower confidence 

factor 
Upper confidence 

factor 

31 0.67945  1.41942 81 0.79414 1.24291 

32 0.68400  1.41170 82 0.79533 1.24126 

33 0.68835  1.40437 83 0.79649 1.23965 

34 0.69253  1.39740 84 0.79764 1.23807 

35 0.69654  1.39076 85 0.79876 1.23652 

36 0.70039  1.38442 86 0.79987 1.23499 

37 0.70409  1.37837 87 0.80096 1.23350 

38 0.70766  1.37258 88 0.80203 1.23203 

39 0.71110  1.36703 89 0.80308 1.23059 

40 0.71441  1.36172 90 0.80412 1.22917 

41 0.71762  1.35661 91 0.80514 1.22778 

42 0.72071  1.35171 92 0.80614 1.22641 

43 0.72370  1.34699 93 0.80713 1.22507 

44 0.72660  1.34245 94 0.80810 1.22375 

45 0.72941  1.33808 95 0.80906 1.22245 

46 0.73213  1.33386 96 0.81000 1.22117 

47 0.73476  1.32979 97 0.81093 1.21992 

48 0.73732  1.32585 98 0.81185 1.21868 

49 0.73981  1.32205 99 0.81275 1.21746 

50 0.74222  1.31838    

Table from: Anderson RN, Rosenburg HM. Age standardisation of death rates: implementation of the year 2000 standard. National  
Vital Statistics Report 1998; 47(3). Hyattsville, Maryland: National Center for Health Statistics. 1998. 

 


