Medical care of cardiovascular disease in Australia

The Australian Institute of Health and Welfare is an independent health and welfare statistics and information agency. The Institute's mission is to inform community discussion and decision making though national leadership in the development and provision of authoritative and timely information on the health and welfare of Australians.

Medical care of cardiovascular disease in Australia

Anne-Marie Waters
Tim Armstrong
Susana Senes-Ferrari

October 1998

This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced without prior written permission from the Commonwealth available from AusInfo. Requests and enquiries concerning reproduction and rights should be directed to the Manager, Legislative Services, AusInfo, GPO Box 1920, Canberra ACT 2601.

This is the seventh publication of the Australian Institute of Health and Welfare's Cardiovascular Disease Series. A complete list of the Institute's publications is available from the Publications Unit, Australian Institute of Health and Welfare, GPO Box 570, Canberra ACT 2601, or via the Institute's web site at http://www.aihw.gov.au.

ISSN 1323-9236
ISBN 0642247889

Suggested citation

Waters A-M, Armstrong T, Senes-Ferrari S 1998. Medical care of cardiovascular disease in Australia. AIHW cat. no. CVD 4. Canberra: Australian Institute of Health and Welfare (Cardiovascular Disease Series no. 7).

Australian Institute of Health and Welfare

Board Chair
Professor Janice Reid
Director
Dr Richard Madden

The Institute welcomes feedback from users on any aspect of this report. Comments, suggestions or requests for further information should be directed to:

Susana Senes-Ferrari
Australian Institute of Health and Welfare
GPO Box 570
Canberra ACT 2601
Email: susana.senes-ferrari@aihw.gov.au
Phone: (02) 62441052
Fax: (02) 62441166

Published by Australian Institute of Health and Welfare

Printed by CPN Publications

Contents

List of tables ix
List of figures xV
List of boxes xvii
Preface xix
Acknowledgments xX
Summary xxi
Introduction 1
National data sources 2
Australian Bureau of Statistics' National Health Survey 1995 2
Uses for monitoring medical care of cardiovascular disease 2
Limitations 3
Drug Utilization Sub-Committee Database 3
Uses for monitoring cardiovascular drug use. 6
Limitations 8
Medicare and Department of Veterans' Affairs medical benefits data. 9
Uses for monitoring medical care of cardiovascular disease 10
Limitations 11
National Hospital Morbidity Database 12
Uses for monitoring medical care of cardiovascular disease 13
Limitations 14
Survey of Morbidity and Treatment in General Practice in Australia 1990-91 15
Uses for monitoring medical care of cardiovascular disease 15
Limitations 16
Non-hospital care 18
Estimates from the Australian Bureau of Statistics' National Health Survey 1995 19
Prevalence of recent cardiovascular conditions 19
Action taken for a recent cardiovascular condition 22
Estimates from the Survey of Morbidity and Treatment in General Practice in Australia 1990-91 24
Cardiovascular problems managed 24
Treatment other than prescribing 28
National Heart Foundation Risk Factor Prevalence Study 31
Hunter Region Heart Disease Prevention Programme Risk Factor Prevalence Study 33
Hospital care 34
The National Hospital Morbidity Database 35
Cardiovascular disease as principal diagnosis only 36
Cardiovascular disease as principal or additional diagnosis 39
Cardiovascular procedures 41
Cardiac procedures for congenital heart disease 48
Medicare and Department of Veterans' Affairs medical benefits data. 51
Use of cardiovascular medical services in 1994-95 52
Trends in the use of cardiovascular medical services 58
Benefits paid for cardiovascular medical services in 1994-95 61
Trends in benefits paid for cardiovascular medical services 62
Estimates from the Australian Bureau of Statistics' National Health Survey 1995 63
Hospital use in the two weeks prior to interview for a recent cardiovascular condition 63
National Heart Foundation cardiac surgery register. 64
National Heart Foundation coronary angioplasty register 65
Australian casemix data 68
Hospital separations for cardiovascular disease 68
Hospital length of stay for cardiovascular disease 70
Waiting times for elective surgery in Australian public hospitals 73
Cardiothoracic transplants 75
Newcastle MONICA project 76
Acute coronary care 1984-94 77
Drug use. 79
Estimates from the Drug Utilization Sub-Committee Database 80
Use and cost of prescriptions subsidised by the PBS in 1995-96 80
Use and cost of drugs dispensed in the community in 1994 and 1995 82
Trends in the use of cardiovascular drugs 83
Trends in the use of antithrombotic agents 86
Trends in the use of serum lipid lowering drugs 87
Trends in the cost of subsidised cardiovascular drugs 89
Trends in the cost of subsidised antithrombotic agents 90
Trends in the cost of subsidised serum lipid lowering drugs 90
Estimates from the Survey of Morbidity and Treatment in General Practice in Australia 1990-91 92
Prescriptions written for cardiovascular conditions 92
Prescribing of cardiovascular drugs 97
Estimates from the Australian Bureau of Statistics' National Health Survey 1995. 100
Use of medication for recent cardiovascular condition 100
Data from the Newcastle and Perth MONICA projects 103
Data from the Hunter Region Heart Disease Prevention Programme 104
Health care costs 107
The Disease Costs and Impact Study 107
Cardiovascular health care costs in 1993-94 107
Australian casemix data 112
AN-DRG costs in 1995-96 112
Medical labour force related to cardiovascular conditions 115
Uses of medical labour force data for monitoring medical care of cardiovascular conditions 115
Number of medical practitioners and Medicare services in cardiovascular and related specialties 115
Appendix A
Definitions of data items in the Australian Bureau of Statistics' National Health Survey 1995 117
Appendix BCardiovascular conditions included in estimates from the AustralianBureau of Statistics' National Health Survey 1995119
Appendix C
Index of antithrombotic, lipid lowering and cardiovascular drugs by generic drug name 121
Appendix D
The classification of cardiovascular disease under the International Classification of Primary Care 124
Appendix E
Survey of Morbidity and Treatment in General Practice in Australia 1990-91 - list of treatments other than prescriptions 127
Appendix F
Survey of Morbidity and Treatment in General Practice in Australia1990-91 - list of generic cardiovascular drugs and diuretics131
Appendix G
Medicare Benefits Schedule-cardiovascular medical services 133
Appendix \mathbf{H}
Summary of the Disease Costs and Impact Study methodologies 137
Supplementary tables 141
Glossary 198
Index of data sources and their uses in this report 200
References 203
Related publications 206

List of tables

Table 1: Percentage distribution of subsidised and non-subsidised prescriptions for drugs used for the management of cardiovascular disease in 1995 9
Table 2: Percentage of males and females reporting a recent cardiovascular condition by age group, 1995 20
Table 3: Percentage of people reporting a recent cardiovascular condition by sex, 1995 21
Table 4: Percentage of people reporting a recent cardiovascular condition by State and Territory, 1995 21
Table 5: Percentage of males and females reporting taking action for a recent cardiovascular condition by age group, 1995 22
Table 6: Percentage of males and females reporting consulting a doctor for a recent cardiovascular condition by age group, 1995 22
Table 7: Percentage of people reporting taking action for a recent cardiovascular condition by sex, 1995 23
Table 8: Percentage of people reporting taking action for a recent cardiovascular condition by action taken and sex, 1995 23
Table 9: Percentage of people reporting taking action for a recent cardiovascular condition by State and Territory, 1995 24
Table 10: Problems managed and patient encounters for cardiovascular conditions, 1990-91 26
Table 11: Distribution of new and old cardiovascular problems managed, 1990-91 26
Table 12: Number of treatments recorded for cardiovascular conditions 29
Table 13: Five most frequent types of treatment recorded for selected cardiovascular conditions 30
Table 14: Percentage of males and females reporting cardiovascular conditions, 1989 32
Table 15: Percentage of males and females having treatment for cardiovascular conditions, 1989 32
Table 16: Separations and average length of stay for principal diagnosis of cardiovascular conditions by sex, public acute and private hospitals, Australia, 1995-96 36
Table 17: Separations and average length of stay for principal or additional diagnosis of cardiovascular conditions by sex, public acute and private hospitals, Australia, 1995-96 40
Table 18: Separations and average length of stay for cardiovascular procedures for males, public acute and private hospitals, Australia, 1995-96 43
Table 19: Separations and average length of stay for cardiovascular procedures for females, public acute and private hospitals, Australia, 1995-96 44
Table 20: Separations and average length of stay for cardiac procedures for congenital heart disease for males, public acute and private hospitals, Australia, 1995-96 49
Table 21: Separations and average length of stay for cardiac procedures for congenital heart disease for females, public acute and private hospitals, Australia, 1995-96 50
Table 22: Use of Medicare and Department of Veterans' Affairs cardiovascular services, 1994-95 53
Table 23: Age-specific incidence rates for cardiovascular Medicare and DVA services by type of service, males, 1994-95 54
Table 24: Age-specific incidence rates for cardiovascular Medicare and DVA services by type of service, females, 1994-95 55
Table 25: Age-standardised incidence rates for cardiovascular Medicare and DVA services by type of service and State and Territory, 1994-95 57
Table 26: Age-standardised incidence rates and standard errors for cardiovascular Medicare and DVA services by type of service, males, 1992-93 to 1994-95 59
Table 27: Age-standardised incidence rates and standard errors for cardiovascular Medicare and DVA services by type of service, females, 1992-93 to 1994-95 60
Table 28: Benefits paid for cardiovascular Medicare and DVA services by type of service, 1994-95 61
Table 29: Benefits paid for cardiovascular Medicare and DVA services by type of service, 1992-93 to 1994-95 (1994-95 prices) 62
Table 30: Percentage of people reporting being hospitalised in the past two weeks for a recent cardiovascular condition by sex, 1995 63
Table 31: Percentage of people reporting visiting casualty/emergency/outpatients or a day clinic for a recent cardiovascular condition by sex, 1995 63
Table 32: The 10 cardiovascular AN-DRGs (V3.0) that account for the highest number of hospital separations by type of hospital, Australia, 1995-96 69
Table 33: The 10 cardiovascular AN-DRGs (V3.0) that account for the highest number of hospital patient days by type of hospital, Australia, 1995-96 71
Table 34: The 10 cardiovascular AN-DRGs (V3.0) with the highest average length of stay by type of hospital, Australia, 1995-96 72
Table 35: Number of heart and heart-lung transplants, Australia, 1986-1996 75
Table 36: Average waiting time and average length of stay for heart transplants by year of transplant, Australia and New Zealand, 1984-1996 76
Table 37: Place of management for patients suffering coronary events, persons aged 25 to 69 years, Newcastle, 1984-1994 77
Table 38: Admission to coronary (cardiac) care or intensive care unit for patients suffering coronary events, persons aged 25 to 69 years, Newcastle, 1984-1994 78
Table 39: Days in hospital for patients suffering coronary events, persons aged 25 to 69 years, Newcastle, 1984-1994 78
Table 40: Total costs of prescriptions subsidised by the PBS, by therapeutic main group, 1995-96 81
Table 41: Distribution of prescription numbers for cardiovascular system drugs, 1992-1994 82
Table 42: Total costs for subsidised drugs used in the management of cardiovascular disease, 1990-1995 (1995 prices) 91
Table 43: Prescriptions written for cardiovascular conditions 93
Table 44: Five most frequently prescribed drug subgroups for selected cardiovascular conditions 94
Table 45: Distribution of cardiovascular drugs by drug subgroup 98
Table 46: Ten conditions most frequently managed by cardiovascular prescriptions 99
Table 47: Number of cardiovascular prescriptions written for cardiovascular conditions 99
Table 48: Percentage of males and females reporting taking any medication for a recent cardiovascular condition by age group, 1995 100
Table 49: Percentage of males and females reporting taking 'heart' medication for a recent cardiovascular condition by age group, 1995 101
Table 50: Percentage of males and females reporting taking medication for a recent cardiovascular condition by sex, 1995 102
Table 51: Percentage of people reporting taking any medication for a recent cardiovascular condition by State and Territory, 1995 102
Table 52: Percentage of patients suffering coronary events who were prescribed certain drugs during hospital admission, persons aged 25 to 69 years, Newcastle, 1984-1994 103
Table 53: Percentage of patients aged 25 to 64 years with acute coronary symptoms prescribed certain drugs during hospital admission, Perth, 1984-1990 104
Table 54: Percentage of males and females who took aspirin in the two weeks before interview to prevent or treat heart disease, 35 to 69 year olds, Hunter region, 1994 105
Table 55: Percentage of males and females taking aspirin every day, 35 to 69 year olds, Hunter region, 1983-1994 106
Table 56: Health care costs of cardiovascular diseases, Australia, 1993-94 109
Table 57: Health care costs of all cardiovascular disease by sex and sector of expenditure, 1993-94 110
Table 58: The 10 cardiovascular AN-DRGs (V3.0) with the highest cost by volume, by type of hospital, Australia, 1994-95 114
Table 59: Cardiovascular condition related Medicare providers and services, 1994-95 116

Supplementary tables

Survey of Morbidity and Treatment in General Practice in Australia 1990-91 141
Table S1: Distribution of all problems managed and all patient encounters by sex and age, 1990-91 141
Table S2: Distribution of problems managed and patient encounters for all cardiovascular conditions by sex and age, 1990-91 142
Table S3: Distribution of problems managed for hypertension by sex and age, 1990-91 143
Table S4: Distribution of problems managed for heart failure by sex and age, 1990-91 144
Table S5: Distribution of problems managed for other coronary heart disease by sex and age, 1990-91 145
Table S6: Distribution of problems managed for angina by sex and age, 1990-91 146
Table S7: Distribution of problems managed for cerebrovascular disease by sex and age, 1990-91 147
Table S8: Distribution of problems managed for other cardiovascular conditions by sex, 1990-91 148
Table S9: Ten most frequently prescribed drugs for all cardiovascular disease, 1990-91 149
Table S10: Ten most frequently prescribed drugs for angina, 1990-91 149
Table S11: Ten most frequently prescribed drugs for other and chronic coronary heart disease, 1990-91 150
Table S12: Ten most frequently prescribed drugs for heart failure, 1990-91 150
Table S13: Ten most frequently prescribed drugs for hypertension, 1990-91 151
Table S14: Ten most frequently prescribed drugs for cerebrovascular disease, 1990-91 151
Table S15: Distribution of all prescriptions and cardiovascular prescriptions written by sex and age, 1990-91 152
Table S16: Ten most frequently prescribed cardiovascular drugs, 1990-91 153
National Hospital Morbidity Database 154
Table S17: Separations and patient days for all cardiovascular disease by sex and age, public acute and private hospitals, 1995-96 154
Table S18: Separations and average length of stay for rheumatic heart disease by sex and age, public acute and private hospitals, 1995-96 155
Table S19: Separations and patient days for hypertensive disease by sex and age, public acute and private hospitals, 1995-96 156
Table S20: Separations and patient days for acute myocardial infarction by sex and age, public acute and private hospitals, 1995-96 157
Table S21: Separations and patient days for coronary heart disease by sex and age, public acute and private hospitals, 1995-96 158
Table S22: Separations and patient days for heart failure by sex and age, public acute and private hospitals, 1995-96 159
Table S23: Separations and patient days for cerebrovascular disease by sex and age, public acute and private hospitals, 1995-96 160
Table S24: Separations and patient days for peripheral vascular disease by sex and age, public acute and private hospitals, 1995-96 161
Table S25: Separations and patient days for chest pain with heart disease by sex and age, public acute and private hospitals, 1995-96 162
Table S26: Separations and patient days for open heart valve replacement surgery by sex and age, public acute and private hospitals, 1995-96 163
Table S27: Separations and patient days for open heart coronary bypass surgery by sex and age, public acute and private hospitals, 1995-96 164
Table S28: Separations and patient days for other cardiothoracic surgery with cardiopulmonary bypass by sex and age, public acute and private hospitals, 1995-96 165
Table S29: Separations and patient days for other cardiothoracic surgery without cardiopulmonary bypass by sex and age, public acute and private hospitals, 1995-96 166
Table S30: Separations and patient days for percutaneous transluminal coronary angioplasty by sex and age, public acute and private hospitals, 1995-96 167
Table S31: Separations and patient days for percutaneous intracoronary stent implant by sex and age, public acute and private hospitals, 1995-96 168
Table S32: Separations and patient days for catheter ablation of lesion of heart by sex and age, public acute and private hospitals, 1995-96 169
Table S33: Separations and patient days for cardiac catheterisation (diagnostic) by sex and age, public acute and private hospitals, 1995-96 170
Table S34: Separations and patient days for electrophysiology studies by sex and age, public acute and private hospitals, 1995-96 171
Table S35: Separations and patient days for cardiac pacemaker device insertion (permanent) by sex and age, public acute and private hospitals, 1995-96 172
Medicare and Department of Veterans' Affairs medical benefits data 173
Table S36: Standard errors for age-standardised incidence rates for cardiovascular Medicare and DVA services by type of service and State and Territory, 1994-95 173
National Heart Foundation cardiac surgery and coronary angioplasty registers 174
Table S37: Rates of open and closed heart operations and percentage mortality, 1953-1993 174
Table S38: Coronary artery bypass graft operations, 1970-1993 175
Table S39: Coronary angioplasty procedures, 1980-1994 175
Drug Utilization Sub-Committee Database 176
Table S40: Community use of drugs used in the management of hypertension, number of prescriptions, 1990-1995 176
Table S41: Community use of other cardiovascular drugs, number of prescriptions, 1990-1995 178
Table S42: Community use of antithrombotic drugs, number of prescriptions, 1990-1995 179
Table S43: Community use of serum lipid lowering drugs, number of prescriptions, 1990-1995 180
Table S44: Community use of drugs used in the management of hypertension, defined daily dose per 1,000 population per day, 1990-1995 181
Table S45: Community use of other cardiovascular drugs, defined daily dose per 1,000 population per day, 1990-1995 183
Table S46: Community use of antithrombotic drugs, defined daily dose per 1,000 population per day, 1990-1995 184
Table S47: Community use of serum lipid lowering drugs, defined daily dose per 1,000 population per day, 1990-1995 185
Disease costs and impact study 186
Table S48: Health care costs of all cardiovascular disease by sex and age, 1993-94 186
Table S49: Health care costs of rheumatic heart disease by sex and age, 1993-94 187
Table S50: Health care costs of hypertensive disease by sex and age, 1993-94 188
Table S51: Health care costs of coronary heart disease by sex and age, 1993-94 189
Table S52: Health care costs of acute myocardial infarction by sex and age, 1993-94 190
Table S53: Health care costs of other forms of heart disease by sex and age, 1993-94 191
Table S54: Health care costs of cardiac dysrhythmias by sex and age, 1993-94 192
Table S55: Health care costs of heart failure by sex and age, 1993-94 193
Table S56: Health care costs of cerebrovascular disease by sex and age, 1993-94 194
Table S57: Health care costs of diseases of the arteries, arterioles and capillaries by sex and age, 1993-94 195
Table S58: Health care costs of atherosclerosis by sex and age, 1993-94 196
Table S59: Health care costs of peripheral vascular disease by sex and age, 1993-94 197

List of figures

Figure 1: Cardiovascular problems, age-sex specific rates per 100 encounters, 1990-91 27
Figure 2: Hypertension problems, age-sex specific rates per 100 encounters, 1990-91 27
Figure 3: Other frequently managed cardiovascular problems, age-sex specific rates per 100 encounters, 1990-91 28
Figure 4: Age-specific hospital separation rates for principal diagnosis of cardiovascular disease by sex, public acute and private hospitals, 1995-96 37
Figure 5: Age-specific hospital separation rates for principal diagnosis of rheumatic heart disease, hypertensive disease, acute myocardial infarction and coronary heart disease by sex, public acute and private hospitals, 1995-96 38
Figure 6: Age-specific hospital separation rates for principal diagnosis of heart failure, cerebrovascular disease, peripheral vascular disease, and chest pain with heart disease by sex, public acute and private hospitals, 1995-96 39
Figure 7: Age-specific hospital separation rates for principal or additional procedure of cardiothoracic surgery by sex, public acute and private hospitals, 1995-96 45
Figure 8: Age-specific hospital separation rates for principal or additional procedure of interventional cardiology by sex, public acute and private hospitals, 1995-96 46
Figure 9: Age-specific hospital separation rates for principal or additional procedure of selected other cardiovascular procedures by sex, public acute and private hospitals, 1995-96 47
Figure 10: Rates of open and closed heart operations and percentage mortality, 1953-1993 64
Figure 11: Coronary artery bypass graft operations, 1970-1993 65
Figure 12: Coronary angioplasty procedures, 1980-1994 66
Figure 13: Community use of drugs for the management of hypertension, 1990-1995 84
Figure 14: Community use of drugs for the management of hypertension by drug class, 1990-1995 85
Figure 15: Community use of other cardiovascular drugs, 1990-1995 86
Figure 16: Community use of antithrombotic agents, 1990-1995 87
Figure 17: Community use of lipid lowering drugs, 1990-1995 88
Figure 18: Community use of serum lipid lowering drugs by class, 1990-1995. 88
Figure 19: Community use of serum lipid lowering drugs by generic drug name, 1990-1995 89
Figure 20: Distribution of the ten most frequently written prescriptions for selected cardiovascular conditions, 1990-91 96
Figure 21: Number of cardiovascular prescriptions written, age-sex specific rates per 100 problems managed, 1990-91 98
Figure 22: Health care costs of cardiovascular disease by age, Australia, 1993-94 110
Figure 23: Health care costs for selected cardiovascular diseases by age and sex, Australia, 1993-94 111
Figure 24: Health care costs for cardiovascular disease by age group and sector of expenditure, 1993-94 112

List of boxes

Box 1: The Drug Utilization Sub-Committee's terms of reference 4
Box 2: The Pharmaceutical Benefits Scheme 5
Box 3: The defined daily dose (DDD) methodology 7
Box 4: Medicare 10
Box 5: Cardiovascular conditions codes 19
Box 6: National Health Survey explanatory notes 20
Box 7: Cardiovascular conditions codes 35
Box 8: Cardiovascular procedures explanatory notes 42
Box 9: Congenital heart disease explanatory notes 48
Box 10: Cardiovascular medical diagnostic procedures and investigations codes 51
Box 11: Waiting times explanatory notes 74
Box 12: National Health Survey explanatory notes 101
Box 13: Health expenditure explanatory notes 108

Preface

Despite great improvements in cardiovascular death rates in recent decades, the disease remains Australia's greatest health problem.
The disease kills almost 54,000 Australians each year, primarily as a result of coronary heart disease, stroke and peripheral vascular disease. Coronary heart disease and stroke alone claim a life every twelve minutes. The direct costs of health care, which include hospital, nursing home, medical and pharmaceutical costs, amounted to $\$ 3.7$ billion in 1993-94. Of particular concern are the consumption of health resources for the invasive management of heart disease, and the heavy burden of disability due to stroke. Also, far too many Australians remain at higher risk of cardiovascular disease through cigarette smoking, high blood pressure, high blood cholesterol, overweight and insufficient physical activity.
For reasons such as these, Australian Health Ministers made cardiovascular health one of five priority areas in the National Health Priority Areas program (the others are cancer control, injury prevention and control, mental health and diabetes mellitus). The Commonwealth Government also funded the Australian Institute of Health and Welfare to establish a national system to monitor cardiovascular disease, its risk factors and management. The system comprises the National Centre for Monitoring Cardiovascular Disease (based at the Institute), an Advisory Committee and Regional Collaboration Centres.
To date, the focus of national reporting on cardiovascular disease has been on prevention (risk factors) and mortality, with treatment receiving less attention. This report, prepared within the National Centre, documents current patterns of medical care using national databases and discusses the uses and limitations of the data sources for monitoring purposes. The report represents the first comprehensive assessment of national data for monitoring the medical management of cardiovascular disease in Australia.

Dr Richard Madden
Director
Australian Institute of Health and Welfare

Dr Andrew Tonkin
Chairman
National Centre for Monitoring Cardiovascular Disease Advisory Committee

Acknowledgments

The authors are grateful to the following people for their valuable contributions to this report:
Graeme Hankey (Department of Neurology, Royal Perth Hospital)
Craig Martin (Health Department of Western Australia)
Andrew Tonkin (National Heart Foundation of Australia)
Sean Aitkin, Stan Bennett, Rod Hall, Jenny Hargreaves, Trent Harlow, Paul Magnus, Ro Martin, Colin Mathers, Sushma Mathur, Lynelle Moon, Amanda Nobbs, Ruth Penm and Melinda Petrie. (Australian Institute of Health and Welfare)
Michael Allars, Akbar Hossain, Dominic Laria, Julie Lindner, Charles Maskell, Peter McManus and Ross Saunders (Commonwealth Department of Health and Family Services)
Carol Bicker, Gerard Cahill, John Cowper and Peter Thomson (Department of Veterans' Affairs)

Helena Britt and Geoffrey Sayer (Family Medicine Research Unit, University of Sydney)
Annette Dobson, Kate D'Este and Richard Heller (University of Newcastle, Centre for Clinical Epidemiology and Biostatistics)
Rob Carter (National Centre for Health Program Evaluation)
Chris Doecke (Royal Adelaide Hospital)
Roy Harvey (University of Wollongong)
Annemarie Kaan (Cardiothoracic Transplant Unit, St Vincent's Hospital, Sydney)

Summary

This report presents information on the medical care of cardiovascular disease in Australia in two ways. First, it describes the data sources relevant to monitoring medical care and assesses the uses and limitations of each collection. Second, it gives information on the prevalence of cardiovascular conditions in the community, their care in general practice and in hospital, the use of drugs to treat these conditions, the costs associated with cardiovascular health care, and the size of the specialised medical labour force involved with cardiovascular disease.

Among the main findings of the report are the following:

Assessment of data sources

- Estimates of the prevalence of cardiovascular conditions in the community and related health actions are available from the National Health Survey 1995, however the information is self-reported and not medically verified.
- Information on the community use of prescription drugs and their cost is available from the Drug Utilization Sub-Committee Database but the condition for which the drug was prescribed is not recorded. The collection excludes over the counter drugs and drugs used in public hospitals.
- Information on use of medical services for cardiovascular disease and their cost is available from the Medicare claims database. However, claims for services to public patients in public hospitals and outpatient services in public hospitals are not included. As the database only covers about 75% of total services, figures derived from this source can be misleading. In addition, the underlying condition for which the service was provided is not recorded.
- Data on medical procedures provided to hospital admitted patients, their associated diagnosis and use of hospital resources are best obtained from the National Hospital Morbidity Database, subject to the accuracy of diagnostic coding. However, the system does not distinguish first admissions from readmissions or transfers so it is not possible to count patients individually. The lack of a unique patient identifier prevents linking to information on long term outcomes.
- An insight into the general practice management of cardiovascular conditions and patterns of prescribing cardiovascular drugs in general practice is given by the Survey of Morbidity and Treatment in General Practice in Australia 1990-91. A comparable continuous survey of morbidity in general practice began in 1998. The information relates only to problems managed at the recorded encounter and excludes any previous encounters, even for the same problem, and any other problems not treated at the encounter.
- Among other useful sources of information are the National Heart Foundation Cardiac Surgery Register and National Heart Foundation Coronary Angioplasty Register for cardiovascular procedures; the Disease Costs and Impact Study for health care costs; and the Medical Labour Force Survey for medical labour force related to cardiovascular conditions.

Information on medical care

- In 1995 over 2.8 million Australians suffered from a cardiovascular condition. Of these people, over 2 million had a cardiovascular condition in the two weeks preceding the interview. This represents 11% of men and 12% of women.
- Almost all people who had a recent cardiovascular condition took some health related action for the condition. Most commonly this action was visiting a doctor.
- Hypertension was the most common cardiovascular condition reported in 1995.
- Cardiovascular conditions were the second most common problems managed in general practice after respiratory conditions in 1990-91, accounting for 12% of the total. Of these, about half were hypertension problems.
- Eight per cent of all public acute and private hospital separations in Australia in 1995-96 were associated with a principal diagnosis of cardiovascular disease. Of these, 37% were due to coronary heart disease, 12% to cerebrovascular disease and 10% to heart failure.
- The average length of stay in hospital for a cardiovascular condition was 6.6 days, compared with 4.3 days on average for all conditions. Of cardiovascular conditions, cerebrovascular disease had the longest average length of stay (12.5 days).
- Common cardiovascular procedures in 1995-96 included diagnostic cardiac catheterisation, coronary artery bypass surgery, diagnostic ultrasound, percutaneous transluminal coronary angioplasty, intracoronary stent implant, cardiac pacemaker insertion and checks, electrophysiology studies, and cardiac stress tests.
- Cardiovascular services, mostly for diagnostic procedures and investigations, accounted for just over 1\% (2.2 million services) of all Medicare and Department of Veterans' Affairs medical services in 1994-95.
- Benefits paid for cardiovascular medical services by Medicare and Department of Veterans' Affairs in 1994-95 totalled $\$ 202$ million, accounting for 3\% of total benefits paid.
- About 17% of all prescriptions dispensed in the Australian community in 1994 were from the cardiovascular system group. This includes inotropic drugs, antiarrhythmics, nitrates, diuretics, beta blockers, calcium channel blockers, ACE inhibitors, other antihypertensives, and peripheral vasodilators.
- Antihypertensives were the drugs most frequently prescribed by general practitioners for cardiovascular conditions.
- Health care costs for cardiovascular disease totalled $\$ 3,719$ million in 1993-94, representing 12% of the total health care costs for all diseases. Coronary heart disease was the major contributor to cardiovascular health care costs, accounting for 25% of the total.

Introduction

This report presents information on the medical care of cardiovascular disease in Australia. Except for the first chapter (National data sources), the report has been organised into chapters that are generally based on type of care as follows:
Chapter 1-National data sources
Describes the national data sources that can be used for monitoring medical care in Australia. For each data source, information is provided on the types of data items available, their uses and limitations and how they can be used to monitor the medical care of cardiovascular disease.

Chapter 2-Non-hospital care

Examines the prevalence of cardiovascular conditions in the community; the health related actions taken for these conditions; and the care of cardiovascular conditions in general practice.

Chapter 3-Hospital care

Examines the use of hospital services for cardiovascular disease.
Chapter 4-Drug use
Examines the use of cardiovascular and other drugs for cardiovascular disease.

Chapter 5-Health care costs

Provides estimates of costs of hospital admitted patient and hospital outpatient services, medical services, allied health services and nursing homes for cardiovascular diseases in 1993-94.

Chapter 6-Medical labour force

Provides estimates of the number of practitioners registered and working in the specialities of cardiology, cardiothoracic surgery and vascular surgery in 1994.

National data sources

This chapter presents information on the following national data sources:

- Australian Bureau of Statistics' National Health Survey 1995;
- Drug Utilization Sub-Committee Database;
- Medicare and Department of Veterans' Affairs medical benefits data;
- National Hospital Morbidity Database;
- Survey of Morbidity and Treatment in General Practice in Australia 1990-91.

Australian Bureau of Statistics' National Health Survey 1995

Introduction

The aim of the 1995 Australian Bureau of Statistics' National Health Survey was to collect information about the health status of Australians, their use of health services and facilities, and health related aspects of their lifestyle (Australian Bureau of Statistics 1997a).
The survey was conducted during the 12 month period January 1995 to January 1996. Information was collected by personal interview in homes drawn from a random sample. Data on approximately 54,000 Australians of all ages was collected in the survey. Information collected that is of relevance to this report include data on:

- demographics;
- long-term, chronic health conditions (i.e. in the 12 months prior to interview);
- recent illness (i.e. in the two weeks prior to interview);
- conditions for which health related action was taken in the two weeks prior to interview;
- hospital admitted patient episodes;
- visits to casualty/emergency/outpatients;
- visits to day clinics;
- doctor consultations;
- consultations with other health professionals; and
- use of medications.

Definitions of these data items can be found in Appendix A.

Uses for monitoring medical care of cardiovascular disease

The methodology used in the 1995 National Health Survey enables direct linkage of health related actions to medical conditions experienced as they were reported together. Therefore, information from the survey can be used to provide estimates of the proportion of Australians suffering from cardiovascular conditions and the health related actions they
may have taken for those conditions. Cardiovascular conditions included in the survey are shown in Appendix B.
The prevalence of cardiovascular conditions, and related health actions, can be estimated for the overall population and for population subgroups. The data can also be used to describe how the type of health related action taken varies for different cardiovascular conditions and for different population subgroups.

Limitations

There are several limitations of the 1995 National Health Survey which may affect the size and accuracy of the estimates for cardiovascular conditions and action taken for those conditions. These limitations include the following:

- information collected in the National Health Survey is essentially self-reported and is not medically verified;
- information is reliant on the respondent's memory;
- cardiovascular conditions that have a considerable effect on the respondent are more likely to be reported than conditions having lesser effects;
- respondents may be unaware that they have a particular condition, especially if it has not been professionally diagnosed;
- medical conditions reported in the survey are those that are more commonly experienced in the community. Therefore, acute conditions requiring hospitalisation such as heart attack would be under represented particularly if potential respondents were still in hospital at the time of the survey or were too sick to respond;
- estimates for less prevalent conditions may be subject to high standard errors;
- some respondents may be reluctant to report some conditions and differences in response may influence data consistency; and
- institutionalised people, including hospital admitted patients and residents of nursing homes, were excluded from the survey.

Drug Utilization Sub-Committee Database

The Drug Utilization Sub-Committee (DUSC) was formed by the Pharmaceutical Benefits Advisory Committee in 1988 (Commonwealth Department of Human Services and Health 1996).

The DUSC maintains a database which monitors the community (i.e. non-public hospital) use of prescription medicines in Australia. This database combines information on prescriptions subsidised by the Pharmaceutical Benefits Scheme and the Repatriation Pharmaceutical Benefits Scheme with an estimate, from the Pharmacy Guild Survey, of those prescriptions that are not subsidised (Edmonds et al. 1993).
The DUSC analyses data from the combined database and disseminates the information in special reports and in its annual publication Australian Statistics on Medicines, the most recent of which contains data for the 1995 calendar year (Commonwealth Department of Health and Family Services 1997a).

Box 1: The Drug Utilization Sub-Committee's terms of reference

- To develop and advise on the mechanisms for the collection, analysis and interpretation of data on drug use in Australia, for use by the Pharmaceutical Benefits Advisory Committee and through it other bodies or individuals;
- To advise the Pharmaceutical Benefits Advisory Committee on changes in drug utilisation patterns as a consequence of changes in drug availability or restrictions on drug use, and to review the utilisation of drugs or therapeutic groups of drugs, including those showing large changes in utilisation rates;
- To identify potential health problems and benefits related to patterns of drug utilisation;
- To facilitate the dissemination of information on drug utilisation;
- To conduct international comparisons of drug utilisation by interaction with appropriate international bodies; and
- To contribute to educational initiatives which promote the quality use of medicines.

The Pharmaceutical Benefits Scheme

The Pharmaceutical Benefits Scheme (PBS) is a national scheme that subsidises the cost of a wide range of pharmaceuticals for the general community (Box 2). The Repatriation Pharmaceutical Benefits Scheme (RPBS) is a similar scheme for returned service men and women. These schemes aim to ensure that individuals have access to necessary pharmaceuticals at affordable prices. In 1995, approximately 74% of all community (i.e. nonpublic hospital) prescriptions in Australia were dispensed under the PBS or the RPBS (Drug Utilization Sub-Committee, personal communication).
The Health Insurance Commission processes all prescriptions submitted for payment of a subsidy under the PBS or RPBS and maintains a computerised database of information relating to these prescriptions. This database does not include any information on:

- medications for general beneficiaries where the PBS dispensed price* is lower than the general patient copayment. In 1995, 20% of all community prescribing was for under copayment prescriptions (Drug Utilization Sub-Committee, personal communication);
- prescriptions for drugs that are only available on private prescription with the patient paying the full cost. In 1995, private prescriptions accounted for 6% of community prescriptions (Drug Utilization Sub-Committee, personal communication);
- over the counter drugs, except for S3 Recordable. S3 Recordable medications are drugs that do not require a prescription but are available only from pharmacies. These drugs must be stored out of public reach and are processed through the pharmacy computer and receive a label. Drugs listed as S3 recordable vary by State and Territory;
- public hospital drug usage; and
- supply of highly specialised drugs to outpatients under section 100 of the National Health Act (Commonwealth Department of Human Services and Health 1996).

[^0]
Box 2: The Pharmaceutical Benefits Scheme

The PBS groups patients into two classes-general beneficiaries and concessional beneficiaries. Concessional beneficiaries include holders of Pensioner Health Benefits Cards and certain other entitlement cards issued by the Departments of Social Security and Veterans' Affairs. All other people are general beneficiaries.
From 1 January 1997, concessional beneficiaries pay $\$ 3.20$ per prescription for pharmaceuticals listed on the PBS. General beneficiaries currently pay up to $\$ 20.00$ (to be indexed annually) per prescription.
If a general beneficiary, or anyone in their immediate family, incurs $\$ 612.60$ worth of PBS expenditure in any calendar year, then prescriptions for every member of the immediate family cost $\$ 3.20$ for the remainder of that year.

The safety net threshold for concessional beneficiaries is currently $\$ 166.40$. Once PBS expenditure for concessional beneficiaries reaches this threshold, they are entitled to receive Pharmaceutical Benefits items free for the rest of the calendar year.
The Commonwealth Government subsidises all PBS prescriptions for which $\$ 3.20$ is paid. This includes all prescriptions dispensed to concessional beneficiaries as well as prescriptions dispensed to general beneficiaries after they have reached the safety net limit for the year. PBS prescriptions costing more than the general patient copayment of $\$ 20.00$ are also subsidised.

The RPBS is generally similar to the PBS for concessional beneficiaries.

The PBS database can provide data on prescription numbers, quantity dispensed, benefits paid (i.e. cost to Government), and total cost of prescriptions (i.e. cost to Government plus patients' contributions). These data can be summarised by variables such as:

- generic drug name and formulation;
- category of recipient - general, concessional, repatriation, safety net or doctor's bag (emergency supplies used by doctors and provided through community pharmacists);
- date of dispensing; and
- postcode of dispensing pharmacy.

The data can also be linked to type of drug based on the Anatomical Therapeutic Chemical (ATC) code.
The PBS database does not include information on the medical condition for which the prescription was written. Further, the database does not include information on patient demographic characteristics for general beneficiaries. For concessional beneficiaries, information on sex and age can be obtained by linking to Department of Social Security data. However, the reliability of this information is limited as prescription use of dependants is also recorded against the concessional beneficiary's identification number once the safety net limit has been reached.

The Pharmacy Guild Survey

The Pharmacy Guild Survey began in 1989. Each month, all dispensing information is collected from a random sample of approximately 300 pharmacies belonging to the Pharmacy Guild of Australia* (Commonwealth Department of Human Services and Health 1996). The pharmacies are stratified into three equal ranges by prescription volume (Edmonds et al. 1993). The survey is administered by Chemdata, a major pharmacy computer software supplier. Each month, participating pharmacies send their dispensing

[^1]records to Chemdata in Canberra where the data are summarised by drug code and category.
Although the Pharmacy Guild Survey collects information on all drugs dispensed, the Department of Health and Family Services only uses the data to calculate estimates of prescription volumes for drugs in the non-subsidised categories, that is private prescriptions and prescriptions priced under the general patient copayment.
Chemdata only provides the Department of Health and Family Services with prescription count data aggregated at national level. No patient identifying or sociodemographic data are available, nor are data available on the cost of prescriptions or the medical condition for which a drug is prescribed.

The Drug Utilization Sub-Committee Database

The Drug Utilization Sub-Committee Database combines the estimates of prescription counts for under copayment and private prescriptions from the Pharmacy Guild Survey with the actual counts of prescriptions submitted to the Health Insurance Commission for payment of a subsidy under the PBS/RPBS.
The DUSC combined database provides complete coverage of the community use of prescription drugs at the national level. The database includes the following data items for both PBS and Pharmacy Guild Survey items:

- Anatomical Therapeutic Chemical (ATC) code. The ATC code has five levelsanatomical main group, therapeutic main group, therapeutic subgroup, chemical/therapeutic subgroup, generic drug name;
- quantity dispensed;
- number of prescriptions; and
- defined daily dose.

The DUSC database also includes the following data items for PBS/RPBS subsidised prescriptions only:

- pay category of recipient (i.e. general, concessional, repatriation, safety net, doctor's bag, etc.);
- benefits paid (i.e. cost to Government);
- patients' contributions;
- total cost (i.e. cost to Government plus patients' contributions); and
- postcode of dispensing pharmacy.

The following data items can be derived for PBS/RPBS subsidised prescriptions:

- State and Territory of dispensing pharmacy; and
- Statistical Local Area (SLA) of dispensing pharmacy.

Uses for monitoring cardiovascular drug use

Drugs used in the management of cardiovascular disease are classified by the Anatomical Therapeutic Chemical code under the Cardiovascular system group (ATC code ' C '). These include inotropic drugs, antiarrhythmics, nitrates, diuretics, beta blockers, calcium channel blockers, ACE inhibitors, other antihypertensives, and peripheral vasodilators. Also of interest are anticoagulants, antiplatelet drugs, thrombolytic drugs and serum lipid lowering drugs which are classified as drugs for Blood and blood forming organs (ATC code ' B^{\prime}). A detailed list of drugs by generic drug name is provided in Appendix C.

The DUSC database can be used to monitor trends and patterns in cardiovascular drug use in the community. It can also be used to monitor the impact of interventions and PBS/RPBS policy decisions (Edmonds et al. 1993). For example, Henry et al. (1991) found that between 1987 and 1989 there had been an unusually large increase in prescribing the serum lipid lowering drug clofibrate. The increase was much greater than that observed for cholestyramine and colestipol which were generally recommended by experts as the treatment for hypercholesterolaemia.* As a result of this study a policy decision was made to restrict the availability of clofibrate on the PBS.
The community use of cardiovascular drugs can be estimated from the DUSC database using prescription counts or the defined daily dose (DDD) methodology (Box 3) (Commonwealth Department of Human Services and Health 1996; Hurley et al. 1988).
The DUSC database can be used to monitor trends in the costs of cardiovascular drugs where all, or the majority, of prescriptions are subsidised by the PBS/RPBS. Table 1 indicates the distribution of subsidised and non-subsidised prescriptions for cardiovascular drugs in 1995. However the proportion of subsidised drugs in a particular class can vary from year to year because of changes in the Pharmaceutical Benefits Schedule, the general patient copayment level and price.

Box 3: The defined daily dose (DDD) methodology

The $D D D$ is based on an assumed average dose per day for a drug when used for its main indication in adults. It can be adjusted for population and quantity dispensed, and expressed as the DDD per 1,000 population per day. Expressed this way, it provides an estimate of the prevalence of use of a drug in the population. However, the DDD methodology has a number of limitations including the following:

- DDD is based on overseas experience and may not adequately reflect the prescribed adult dose in Australia;
- not all drugs dispensed are necessarily consumed;
- the DDD per 1,000 population per day methodology assumes that every patient takes the defined daily dose continuously throughout the year; and
- the DDD per 1,000 population per day is calculated for a whole population and so does not take account of drug use that is concentrated in certain age groups or a particular sex.
The $D D D / 1,000 /$ day is calculated from prescription data as

$$
N x M x Q x 1,000 / D D D x P x D
$$

where $N=$ number of prescriptions dispensed in the year
$M=$ mass of each dose
$Q=$ average dispensed quantity per prescription
$P=$ mid-year Australian population
$D=$ number of days in a year

Similarly, comparisons of drug use at regional levels can be made for cardiovascular drugs where the majority of prescriptions are subsidised by the PBS/RPBS. However, estimates for non-subsidised prescriptions are only available at national level. This means that for the

[^2]management of some conditions, such as hypertension, estimates of community drug use at regional and State and Territory levels would not be complete for older medications such as diuretics and beta blockers which are usually priced below the general copayment. Where regional comparisons can be made, they should be adjusted for factors such as the number of safety net cards issued and the number of people entitled to concessional status (Harvey 1991). Further, the interpretation of regional comparisons may be heavily biased by different prescribing patterns of doctors.
The usefulness of the DUSC database for monitoring cardiovascular disease would be enhanced if prescription use and costs for subsidised and non-subsidised drugs were recorded and available at the patient level and included patient demographic characteristics, indication for drug use, and geographic location of both prescribing doctor and dispensing pharmacy. The collection of data items that facilitate record linkage may be of use as well.

Limitations

The DUSC combined database does not include any patient identifying or sociodemographic data. Therefore it is not possible to estimate the number of people receiving treatment with any type of drug, nor is it possible to monitor drug use by sex, age or population subgroups.
The database does not include any information on the condition for which the drug has been prescribed. This makes it difficult to use the database to monitor drug use for specific conditions, particularly for those drugs that can be used for multiple indications.
The combined database does not include any information on over the counter drugs (except for S3 Recordable), public hospital drug usage or supply of highly specialised drugs to outpatients under section 100 of the National Health Act (Commonwealth Department of Human Services and Health 1996).
Information on costs is only available for prescriptions subsidised by the PBS/RPBS. Similarly, information at regional and State and Territory levels is only available for subsidised drugs. This has limitations for older drugs with generic competition as they are usually priced below the general copayment and therefore their cost and level of use can only be estimated at national level.

Table 1: Percentage distribution of subsidised ${ }^{(a)}$ and non-subsidised ${ }^{(b)}$ prescriptions for drugs used for the management of cardiovascular disease in 1995

Type of drug (ATC code)	Subsidised community use	Non-subsidised community use
Beta blockers (C07)	72.2	27.8
Calcium channel blockers (C08)	98.0	2.0
ACE inhibitors (C02E)	99.9	0.1
Diuretics (C03)	85.1	14.9
Low ceiling diuretics, thiazides (C03A)	73.9	26.1
Low ceiling diuretics excluding thiazides (C03B)	94.4	5.6
High ceiling diuretics (C03C)	89.5	10.5
Potassium sparing agents (C03D)	84.9	15.1
Diuretics and potassium sparing agents in combination (C03E)	74.1	25.9
Other antihypertensive drugs (C02A, C02C, C02D)	88.9	11.1
Centrally acting antiadrenergic agents (C02A)	88.5	11.5
Peripherally acting antiadrenergic agents (C02C)	89.5	10.5
Agents acting on arteriolar smooth muscle (C02D)	84.2	15.8
Antiarrhythmics (C01B)	99.6	0.4
Anticoagulants (B01AA, B01AB)	78.2	21.8
Antiplatelet drugs (B01AC)	8.9	91.1
Thrombolytic drugs (B01AD)	97.4	2.6
Inotropic drugs (C01A, C01C)	88.5	11.5
Cardiac glycosides (C01A)	88.6	11.4
Cardiac stimulants excluding glycosides (C01C)	0.0	100.0
Nitrates (C01D)	98.7	1.3
Peripheral vasodilators (C04)	28.8	71.2
Lipid lowering drugs (B04)	99.8	0.2
Sas		

(a) Subsidised by the PBS/RPBS.
(b) Estimated from the Pharmacy Guild Survey.

Source: Drug Utilization Sub-Committee of the Pharmaceutical Benefits Advisory Committee.

Medicare and Department of Veterans' Affairs medical benefits data

Medicare data

Medicare is Australia's national health insurance scheme (Box 4). The scheme is administered by the Health Insurance Commission (HIC) and has been in operation since 1 February 1984 (Health Insurance Commission 1995).
The Health Insurance Commission processes all claims relating to private medical services provided out of hospital and medical services for private patients in public and private hospitals. It is from this claims database that Medicare statistics are derived.

Box 4: Medicare

Under Medicare, all Australian residents, except foreign diplomats and their dependants, are entitled to free treatment in public hospitals as public patients or outpatients. Medicare also provides rebates for a range of other medical, optometrical and dental services. The benefits paid are based on the schedule of fees set by the Government. Limited benefits are available to short-term visitors from countries that have reciprocal health care arrangements for Australian citizens.

For out-of-hospital services, Medicare pays a benefit of up to 85% of the schedule fee (providing the benefit does not exceed the charge for the service), with a maximum gap between the schedule fee and benefit of $\$ 50.00$ (indexed annually). If a practitioner directly bills the Health Insurance Commission for any service then the amount payable to the practitioner is the Medicare benefit and the patient must not pay any additional amount (Australian Institute of Health and Welfare 1996a). Otherwise the patient pays the difference between the schedule fee and the Medicare benefit. For services provided to private patients in private or public hospitals, the Medicare benefit is 75% of the schedule fee.
Under Medicare, benefits are payable for most privately provided medical services (for example, benefits are not payable for cosmetic surgery). Since 1995, changes to the National Health Act known as the private health insurance reform, have enabled individual private health funds to pay over the schedule fee for in hospital services if the fund has a Medical Purchaser Provider Agreement with the doctor concerned. For privately rendered medical services not covered by private health insurance reform contracts, private funds are able to offer insurance to cover the gap between the Medical Benefits Schedule fee and the benefit for medical services provided to private patients in hospital (i.e. 75% of the schedule fee). For non admitted patient services, and for admitted patient services not covered by private health insurance, amounts charged by the doctor above the Medical Benefits Schedule fee are not covered by insurance.

Medicare has a safety net scheme to protect patients whose accumulated 'gap' payments (i.e. the difference between the schedule fee and the Medicare benefit) in any one calendar year exceed a specified amount (indexed annually). Individuals and registered families who qualify for the safety net scheme are entitled to receive up to 100% of the schedule fee for the remainder of the calendar year.

The Medicare Estimates and Statistics Section of the Department of Health and Family Services maintains a number of summary files containing Medicare claims data. The main fields available in these files include:

- service provider number
- date of service
- date of processing
- Medicare item number
- bill type (i.e. direct billing or patient billing)
- fee charged
- benefit paid
- sex of patient
- age of patient
- postcode of patient
- State and Territory of patient.

Uses for monitoring medical care of cardiovascular disease

The Medicare Benefits Schedule covers a range of medical services specifically for cardiovascular disease. These include cardiovascular diagnostic procedures and investigations; vascular, cardiothoracic and cerebrovascular operations; cardiac and vascular
ultrasound; angiography; and cardiac nuclear imaging procedures. Although there is no indicator to separately identify which procedures and investigations occur in hospital, it is reasonable to assume that most are admitted patient related. Therefore Medicare data may be a useful source of data for examining trends and variations in cardiovascular service use among private hospital patients. However, this information can also be obtained from hospital admitted patient databases, where coverage is more complete than that of the Medicare database.
Medicare data can also be used to examine the costs to Government (i.e. benefits paid) of cardiovascular medical services.
Medicare statistics can be disaggregated by sociodemographic characteristics of patients such as sex, age, State and Territory, and region. The data have also been linked to other databases such as the Australian Bureau of Statistics socioeconomic indexes by area to enable examination of variations by factors such as socioeconomic disadvantage (McClelland 1991).
The usefulness of Medicare data for monitoring medical care of cardiovascular disease would be enhanced if data facilitating linkage to other databases were collected.

Limitations

General limitations

The major limitation of Medicare data is its coverage of services. It has been estimated that the Medicare claims database only provides information for about 75% of medical services in Australia (Deeble 1991). Services not covered by the Medicare data, since they do not qualify for Medicare benefits, include:

- admitted patient services provided to public patients in public hospitals;
- outpatient services provided by public hospitals;
- services given to eligible military service veterans and their dependants;
- services covered by workers' compensation schemes and third party motor vehicle insurance (however, these services can attract an interim benefit pending settlement of a court case);
- services given by public authorities and most government funded community health services; and
- services not necessary for patient care such as health screening services and health examinations for life insurance or employment purposes.
Services to public patients in public hospitals together with outpatient services provided by public hospitals account for approximately 17% of all medical services (Deeble 1991). The remainder of services not covered by Medicare account for 6 to 7% of all services.
Another limitation is that it is not possible to determine from Medicare data the nature of medical consultations provided by general practitioners and specialists. Even for specific procedures, there is no information on the underlying medical condition.
Care should be exercised in interpreting trends based on Medicare statistics. Changes in use of services over time can be due to many factors. These include changes to the Medicare Benefits Schedule; changes to the coverage of Medicare as a result of Government policy; changes in the mix of services provided in public and private hospitals; population growth and net migration; ageing of the population; the proportion of the population with private health insurance; and cost shifting (i.e. services previously provided free of charge by States
and Territories, that are now only available under Medicare) (Commonwealth Department of Health and Family Services 1996a).
State and Territory comparisons can be affected by differences in the mix of public and private patients in hospitals as well as differences in age structures between States and Territories. These factors may need to be considered when undertaking State and Territory comparisons.

Limitations for monitoring cardiovascular medical care

The major limitation of the database for monitoring cardiovascular medical care is that services provided to public patients in public hospitals are not covered. This means that where Medicare data suggest that use of a particular cardiovascular procedure is low, this may be because the procedure is routinely undertaken in public hospitals and so is under counted in the Medicare database.
The use of cardiovascular medical services among the elderly may also be underestimated in the Medicare claims database because it does not include data relating to services given to eligible military veterans and their dependants. To minimise the effect of this in the analysis presented in this report, Medicare data have been supplemented by medical benefits data from the Department of Veterans' Affairs.

Department of Veterans' Affairs medical benefits database

The Health Program of the Department of Veterans' Affairs (DVA) provides eligible military veterans and their dependants access to medical services, allied health services, pharmaceuticals, community nursing, respite care and hospital treatment (Australian Institute of Health and Welfare 1994; Repatriation Commission and the Department of Veterans' Affairs 1995).
The DVA maintains a database of information relating to medical services for eligible persons. This database codes services using the same item numbers used in the Medicare Benefits Schedule.
DVA medical benefits data have been combined with Medicare data in this report to account for the fact that eligible military service veterans and their dependants tend to use both Medicare and DVA services.

National Hospital Morbidity Database

Hospital morbidity data collections are maintained by all State and Territory health authorities. The collections are based on admitted patient episodes and include demographic, diagnostic, procedural and duration of stay information. The data items supplied to the Australian Institute of Health and Welfare by all the States and Territories are those which make up the national minimum data set for institutional health care (National Health Data Committee 1995). The database held at the Institute is called the National Hospital Morbidity Database. The latest year for which data are available and have been published is 1996-97 (Australian Institute of Health and Welfare 1998).
Diagnostic information and procedures performed in Australian hospitals are classified according to the Australian version of the International Classification of Diseases, Version 9, Clinical Modification (ICD-9-CM).
Statistics on hospital use are referred to as hospital separation statistics as most of the data are based on information recorded at the end of patients' hospital stays rather than at the
beginning (Australian Institute of Health and Welfare 1996a). This is because the length of stay and the procedures carried out are then known, and the diagnostic information is more accurate.
The National Hospital Morbidity Database includes the following items:

- data set year;
- establishment identifier;
- sector, that is, public or private;
- sex;
- date of birth (or age or age group, where date of birth not supplied);
- country of birth;
- Aboriginality;
- State and Territory and area of usual residence;
- patient accommodation status;
- compensable status;
- insurance status;
- episode type;
- admission and discharge dates;
- total number of leave days;
- length of stay;
- source of referral;
- separation mode;
- external cause and place of occurrence of external cause;
- diagnosis related group (AN-DRG);
- major diagnostic category;
- diagnoses (principal and up to 20 additional diagnoses in 1995-96); and
- procedures (principal and up to 28 additional procedures in 1995-96).

Uses for monitoring medical care of cardiovascular disease

Hospital admitted patient data are useful for monitoring the use of surgical and medical procedures performed in hospital. The data are also useful for monitoring use of hospital resources.

The data cannot be directly used to monitor disease incidence. However, Boyle and Dobson (1995a) estimated rates and numbers of heart attacks in Australia from hospital morbidity data after adjusting by a factor determined from validation studies from the Newcastle MONICA Project.
The usefulness of hospital morbidity data would be enhanced by including unique patient identifiers to distinguish between first admissions, readmissions and transfers. Data items enabling record linkage to other databases would also be desirable. Record linkage has proved valuable in Western Australia (WA linked database) and New South Wales (part of HOIST data warehousing facility), where service level morbidity data were linked to several data sets (including mortality, cancer and midwives) to create data sets at the person level which can be used in health research. With this type of data development, it may be possible
to use hospital morbidity data to monitor the incidence of hospital-treated cardiovascular diseases at reasonable cost.

Limitations

General limitations

Hospital separations data have limitations as indicators of community morbidity (Australian Institute of Health and Welfare 1996a). Sick people who do not use hospitals are not counted, nor are people with undetected conditions. Hospital use is influenced by factors other than morbidity, such as availability of beds, admission policies and social factors (Bennett et al. 1995). Further, it is not possible to count patients individually. This is because people who are admitted more than once, or to more than one institution, are counted on each occasion and data that distinguish first admissions from readmissions or transfers are not collected.
Although diagnosis and procedure information is recorded using the national standard ICD-9-CM, there may have been some minor variation in its use among the States and Territories and over time.
Although all States and Territories provide for the identification of Aboriginal status in their hospital morbidity databases, the information is of variable reliability (Australian Institute of Health and Welfare 1996b).
The lack of a unique national patient identifier means that it is not possible to monitor longterm outcomes or undertake survival analysis of patients admitted to hospital.

Limitations for monitoring cardiovascular medical care

The accuracy of diagnostic coding is a major issue for monitoring cardiovascular medical care. Several Australian studies have examined the accuracy of recording acute myocardial infarction (ICD-9-CM 410) in hospital admitted patient records. The latest such study by Boyle and Dobson (1995b) found that only about two thirds of cases with a hospital discharge diagnosis code of ICD-9-CM 410 actually had a definite acute myocardial infarction by an internationally set epidemiological standard. This highlights the difference, in this study, between the clinical and epidemiological definitions of acute myocardial infarction. The accuracy of hospital separations data for cardiovascular conditions other than acute myocardial infarction has not been assessed.

Survey of Morbidity and Treatment in General Practice in Australia 1990-91

The Survey of Morbidity and Treatment in General Practice in Australia was conducted by the Family Medicine Research Unit at the University of Sydney from October 1990 to October 1991. The survey was the third national survey of morbidity in general practice undertaken in Australia. Previous surveys were conducted in 1962-63 and 1969-74 (BridgesWebb et al. 1992).
The survey design involved a random sample of general practitioners, stratified by State. The final sample included 495 general practitioners, representing 50.4% of those contacted and eligible to participate. Each participating general practitioner recorded details of all surgery and home doctor-patient encounters for two periods of one week, six months apart. The total sample was spread evenly throughout the year. Weighting factors were applied to records at the State and Territory level to produce balanced national estimates.
Data items collected include:

- age of patient;
- sex of patient;
- patient's reasons for encounter (up to 3 per encounter);
- diagnoses or problems managed (up to 4 per encounter);
- types of pathology, other tests, and X-ray investigations ordered or undertaken;
- information regarding referrals to specialists or health professionals (up to 2 per encounter);
- admissions to a hospital or nursing home; and
- planned follow-up within three months of the encounter.

For each problem managed, further information was collected on prescriptions written or other treatments provided (up to 4 per problem managed) as well as whether the problem was a new or old problem.
The unit record data set provided to the Australian Institute of Health and Welfare includes non-identifiable information relating to 98,789 patient encounters at which 145,645 problems were managed. Problems managed were coded to the International Classification of Primary Care (ICPC). A brief description of the ICPC and its classification of cardiovascular disease is provided in Appendix D. The list of treatments and generic cardiovascular drugs used in the survey are presented in Appendix E and Appendix F, respectively.
Detailed information about the survey methodology can be found in Bridges-Webb et al. (1992).

Uses for monitoring medical care of cardiovascular disease

Data from the Survey of Morbidity and Treatment in General Practice in Australia can be used to give a picture of cardiovascular morbidity and its treatment in general practice in Australia. The data are particularly useful for giving a snapshot of the general practice management of chronic cardiovascular conditions such as hypertension. However, the data are less useful for acute conditions such as heart attack, where a patient would normally go straight to hospital rather than consult a general practitioner.

Data relating to cardiovascular disease can be analysed by sex, age group and State and Territory. However, as noted above, the results of such analyses for specific cardiovascular conditions must be interpreted with care.
The survey data are very useful for linking drug and other treatments to specific diagnoses. Information on prescriptions written is available at the generic drug level as well as major drug group and drug subgroup levels. Information on other treatments for problems managed is also available at a detailed level.
As well as providing information on the management of cardiovascular conditions, the survey can provide information on patterns of prescribing cardiovascular drugs in general practice.
Data from the 1990-91 survey have been compared to data from the 1969-74 morbidity and prescribing survey (Bridges-Webb et al. 1992).
A comparable continuous survey on morbidity in general practice, run by the General Practice Statistics and Classification Unit (a collaborating unit of the University of Sydney and the Australian Institute of Health and Welfare) commenced in April 1998. Its usefulness for cardiovascular monitoring has been enhanced by the capacity to link information on all aspects of treatment to problems managed and by collecting more patient sociodemographic information, such as identification of non-English-speaking background and Indigenous status.

Limitations

Bridges-Webb et al. (1992) have described several limitations of the 1990-91 survey:

- the survey only included general practitioners working in private practice on a fee for service system, i.e. no salaried practitioners from the public or private sectors were included;
- the survey does not give a picture of the incidence or prevalence of disease in the community, rather it describes what is happening in general practice consultations;
- the survey provides a snap shot of how illness is managed in general practice but the results cannot be extended to conclusions about disease episodes or the long term treatment of patients with chronic disease;
- the survey only captures information about the problems managed during the recorded encounters and does not include information about any other problems not treated at the encounter;
- similarly, the survey only includes information about the prescriptions issued and treatments recorded for problems managed at the recorded encounter, i.e. prescriptions and treatments at previous encounters, even for the same problem, are not included; and
- tests and investigations ordered or undertaken, referrals to specialists and health professionals, admissions to a hospital or nursing home, and planned follow-up cannot be directly linked to a specific problem unless only one problem was managed at the recorded encounter.
The Family Medicine Research Unit has conducted several studies to examine the reliability and validity of the data recorded by general practitioners in this survey. In a collaborative study with the University of Queensland, it was found that general practice data obtained from encounter forms, such as those used in the Survey of Morbidity and Treatment in General Practice in Australia, were more comprehensive and coded more reliably than data drawn from medical records (Britt et al. 1996). In another collaborative project with Monash

University, the Family Medicine Research Unit examined the reliability and validity of the data collected by general practitioners in active data collections (H Britt, personal communication). It was found that the data collection method used in the Survey of Morbidity and Treatment in General Practice in Australia 1990-91 provides a reliable overview of the morbidity managed in general practice. It was also found that morbidity data recorded at a patient encounter are reliable and valid at International Classification of Primary Care chapter level. However, at the individual rubric level (ICPC 3-digit code), the validity and reliability of the data are less certain because of the considerable variance between individual practitioners in the selection of the label to describe the problem managed (H Britt, personal communication). This has implications for the data presented in this report, as results are presented for specific cardiovascular conditions as well as the cardiovascular chapter. These results must be interpreted with care, particularly as they have been further broken down by sex, age, prescriptions written and other treatments provided.

Non-hospital care

Introduction

This chapter presents information on the non-hospital management of cardiovascular disease in Australia. Detailed analysis from two national sources of data (the Australian Bureau of Statistics' National Health Survey 1995; and the Survey of Morbidity and Treatment in General Practice in Australia 1990-91) are presented as well as results from the National Heart Foundation Risk Factor Prevalence Study 1989 survey and the Hunter Region Heart Disease Prevention Programme Risk Factor Prevalence Study.
The limitations of the national data sources, as discussed in the chapter National data sources, should be kept in mind when interpreting the results presented here.

Data sources

- The Australian Bureau of Statistics' National Health Survey 1995 (Australian Bureau of Statistics 1997a; 1997b). Provides national estimates of the self-reported prevalence of cardiovascular conditions and health related actions taken for these conditions.
- The Survey of Morbidity and Treatment in General Practice in Australia 1990-91 (Bridges-Webb et al. 1992). Provides national estimates of cardiovascular morbidity and its treatment in general practice.
- The National Heart Foundation Risk Factor Prevalence Study (Risk Factor Prevalence Study Management Committee 1990). Surveys were conducted in 1980, 1983 and 1989. Participants were randomly selected from Commonwealth electoral rolls. The 1989 survey included men and women aged 20 to 69 years from all capital cities (about 9,300 respondents). Information on history of medical conditions and treatment was obtained in a clinical setting from a self-completion questionnaire.
- The Hunter Region Heart Disease Prevention Programme Risk Factor Prevalence Study (Alexander et al. 1995). Surveys were conducted in 1983, 1988-89 and 1994. Participants were selected from the New South Wales electoral roll. The 1994 survey included people aged 35-69 years living in the local government areas of Newcastle, Lake Macquarie, Cessnock, Maitland and Port Stephens. Potential respondents who did not participate in the main study were invited to complete a brief postal questionnaire. There were 1,670 participants in the main study. Information on history of medical conditions and treatment was obtained from a self-completion questionnaire completed in a clinical setting. A further 303 people completed the brief postal questionnaire, which asked about history of medical conditions as well as whether the respondent was currently taking medication for high blood pressure.

Estimates from the Australian Bureau of Statistics' National Health Survey 1995

Prevalence of recent cardiovascular conditions

Based on data from the National Health Survey, an estimated 2,848,342 Australians suffered from a cardiovascular condition in 1995. Of these people, $2,062,938$ reported having a recent cardiovascular condition (i.e. experienced in the two weeks prior to interview). Almost all (99.5\%) people reporting having a cardiovascular condition in the two weeks prior to interview also reported taking one or more health related action for the condition.

Box 5: Cardiovascular conditions codes

The Australian Bureau of Statistics coded all self-reported conditions to the Ninth Revision (1975) of the International Classification of Diseases (ICD-9). The code list for cardiovascular conditions represents a collapsed ICD-9 list, with most conditions reflecting a broad category of related or similar cardiovascular diseases/conditions. The overall approach in the survey was to classify and code the manifesting condition and not the cause. The Australian Bureau of Statistics' coding procedure reflects the nature of a self-report household survey, where respondents' information was not medically verified. Further, more detailed coding would have resulted in high relative standard errors due to low frequencies that would occur for some conditions and/or population groups.
A detailed list of the cardiovascular conditions for which estimates are provided, their ICD-9 codes and their derived Australian Bureau of Statistics' codes are provided in Appendix B. A summarised list of those cardiovascular conditions follows:

Condition	ICD-9-CM code	ABS code
Hypertension	$401-405$	072
Heart disease	$391,394,398,410-429$	082
Atherosclerosis	440	015
Cerebrovascular disease	$430-435,437$	219
Stroke after effects	436,438	119
Other diseases of the circulatory system	$390,441-448,451-453,457-459,745-747$	019
III-defined signs and symptoms of heart conditions Includes heart problems/trouble, irregular	182	

Prevalence of recent cardiovascular condition by age

The prevalence of self-reported recent cardiovascular conditions (i.e. in the two weeks prior to interview) increased with age for males and females. Overall, in 199510.7% of males and 12.2% of females reported having a recent cardiovascular condition. Males reported a higher proportion of heart disease than females in all age groups. Females reported a greater prevalence of hypertension (9.3\%) than did males (7.2\%) (Table 2).

Box 6: National Health Survey explanatory notes

Age-specific and age-standardised estimates are provided here. The standard population used for age standardisation was the estimated total mid-year Australian population in 1991 (refer to the Glossary). Very small estimates are subject to high standard errors (relative to the size of the estimate). In this report, only estimates which were derived from a numerator estimate with a relative standard error of less than 25% are considered reliable. However, estimates with relative standard errors between 25% and 50% have been included and are preceded by an asterisk (e.g. *1.6) to indicate that they should be interpreted with caution. Estimates with relative standard errors greater than 50% have not been shown as they are considered too unreliable for use (Australian Bureau Statistics 1997a). These estimates have been replaced by an asterisk (*).

Definitions of the items included in the tables below are provided in Appendix A.

Table 2: Percentage of males and females reporting a recent cardiovascular condition by age group, 1995

Sex/Type of condition	Age group (years)							
	<25	25-34	35-44	45-54	55-64	65-74	75+	All ages
Males								
Hypertension	*0.0	0.9	3.6	10.4	22.2	31.4	31.9	7.2
Heart disease	0.1	0.2	0.4	1.5	6.2	11.6	16.1	2.2
Atherosclerosis	-	-	-	*0.1	0.3	0.6	0.8	0.1
Cerebrovascular disease ${ }^{(a)}$	*0.0	*0.1	*0.1	*0.1	1.0	3.0	2.2	0.3
Other diseases of the circulatory system	0.1	0.3	0.7	2.0	5.6	12.3	11.7	2.2
III-defined signs and symptoms of heart conditions	*0.1	*0.1	0.3	0.9	2.9	7.3	9.7	1.3
All cardiovascular ${ }^{(b)}$	0.3	1.5	4.6	13.3	31.5	48.9	53.6	10.7
Females								
Hypertension	*0.2	0.9	2.5	10.8	25.6	38.9	40.7	9.3
Heart disease	*	*0.1	0.2	0.7	2.7	6.1	13.3	1.6
Atherosclerosis	-	-	-	*	*0.1	*0.3	*1.9	0.1
Cerebrovascular disease ${ }^{(a)}$	-	*0.0	*	*0.1	0.4	0.9	1.0	0.2
Other diseases of the circulatory system	0.1	0.4	0.7	1.5	3.4	8.5	11.1	1.9
III-defined signs and symptoms of heart conditions	0.1	0.2	*0.1	0.7	3.1	5.8	11.0	1.5
All cardiovascular ${ }^{(b)}$	0.4	1.6	3.3	13.2	31.4	49.8	57.5	12.2

(a) Includes after-effects of stroke.
(b) Each person may have reported more than one type of condition and therefore components do not add to totals.
-nil

* Subject to high sampling variability.

Source: AIHW derived from the ABS National Health Survey 1995.

Prevalence of recent cardiovascular condition by sex

After adjusting for age, the self-reported prevalence of recent cardiovascular condition in 1995 was about 11.0% for both males and females (Table 3). Hypertension was the most common condition for both females and males. Males reported a slightly higher prevalence rate than females for heart disease and 'other diseases of the circulatory system', while for hypertension the converse was true.

Table 3: Percentage ${ }^{(a)}$ of people reporting a recent cardiovascular condition by sex, 1995

Type of condition	Males	Females
Hypertension	Per cent (SE)	
Heart disease	$7.3(0.1)$	$8.4(0.1)$
Atherosclerosis	$2.3(0.1)$	$1.4(0.1)$
Cerebrovascular disease ${ }^{(b)}$	$0.1(0.0)$	$0.0(0.0)$
Other diseases of the circulatory system	$0.3(0.0)$	$0.2(0.0)$
III-defined signs and symptoms of heart conditions	$2.2(0.1)$	$1.7(0.1)$
All cardiovascular	$1.4(0.1)$	$1.3(0.1)$

(a) Age-standardised to the mid-1991 total Australian population.
(b) Includes after-effects of stroke.

SE: Standard error
Source: AIHW derived from the ABS National Health Survey 1995.

Prevalence of recent cardiovascular condition by State and Territory

Age-standardised prevalence rates for a cardiovascular condition were highest in Tasmania (12.3%) and New South Wales (12.0%), and lowest in the Northern Territory (6.8%) (Table 4). It should be noted that prevalence estimates for atherosclerosis and cerebrovascular disease were too small to report and are not included as separate conditions in Table 4.
Hypertension was the most prevalent condition reported in all States and Territories, with Tasmania and New South Wales having the highest rates and the Northern Territory the lowest.

Table 4: Percentage ${ }^{(a)}$ of people reporting a recent cardiovascular condition by State and Territory, 1995

Type of condition	NSW	Vic	Qld	WA	SA	Tas	ACT	NT
	Per cent (SE)							
Hypertension	8.8 (0.2)	7.4 (0.2)	7.7 (0.2)	6.9 (0.3)	7.4 (0.3)	9.1 (0.6)	6.8 (0.7)	4.6 (0.8)
Heart disease	1.8 (0.1)	1.8 (0.1)	1.8 (0.1)	1.6 (0.1)	1.7 (0.1)	2.6 (0.3)	2.0 (0.4)	0.7 (0.3)
Other diseases of the circulatory system ${ }^{(b)}$	2.2 (0.1)	1.7 (0.1)	2.0 (0.1)	1.7 (0.1)	2.4 (0.1)	1.7 (0.2)	1.4 (0.3)	0.7 (0.3)
III-defined signs and symptoms of heart conditions	1.6 (0.1)	1.2 (0.1)	1.2 (0.1)	1.2 (0.1)	1.0 (0.1)	1.4 (0.2)	1.2 (0.3)	1.5 (0.5)
All cardiovascular ${ }^{(c)}$	12.0 (0.2)	10.4 (0.2)	10.5 (0.2)	9.9 (0.4)	10.3 (0.4)	12.3 (0.7)	9.5 (0.9)	6.8 (1.1)

(a) Age-standardised to the mid-1991 total Australian population.
(b) Does not include atherosclerosis, cerebrovascular disease or after-effects of stroke.
(c) Includes atherosclerosis, cerebrovascular disease and after-effects of stroke.

SE: Standard error
Source: AIHW derived from the ABS National Health Survey 1995.

Action taken for a recent cardiovascular condition

Action taken for a recent cardiovascular condition by age

Over 99% of people reporting a recent cardiovascular condition also reported taking a health related action for that condition. The proportion of people with a recent condition reporting taking action for that condition, was lowest among people aged less than 34 years (Table 5).
More males aged 65-74 years than females in that age group reported consulting a doctor for a recent cardiovascular condition. Females aged 25-34 and 45-54 years were more likely than males in those age groups to visit a doctor for a recent cardiovascular condition (Table 6).

Table 5: Percentage of males and females reporting taking action for a recent cardiovascular condition by age group, 1995

	Age group (years)							
Sex	$<\mathbf{2 5}$	$\mathbf{2 5 - 3 4}$	$\mathbf{3 5 - 4 4}$	$\mathbf{4 5 - 5 4}$	$\mathbf{5 5 - 6 4}$	$\mathbf{6 5 - 7 4}$	$\mathbf{7 5 +}$	All ages
Males	91.1	97.7	99.8	99.6	99.3	99.8	99.8	$\mathbf{9 9 . 5}$
Females	89.7	94.2	99.1	99.5	99.5	99.8	99.7	$\mathbf{9 9 . 4}$

Source: AIHW derived from the ABS National Health Survey 1995.

Table 6: Percentage of males and females reporting consulting a doctor for a recent cardiovascular condition by age group, 1995

	Age group (years)							
Sex	$<\mathbf{2 5}$	$\mathbf{2 5 - 3 4}$	$\mathbf{3 5 - 4 4}$	$\mathbf{4 5 - 5 4}$	$\mathbf{5 5 - 6 4}$	$\mathbf{6 5 - 7 4}$	$\mathbf{7 5 +}$	All ages
Males	41.0	26.0	12.0	11.4	11.7	12.9	12.4	$\mathbf{1 2 . 8}$
Females	41.1	30.5	12.0	18.2	11.6	8.8	12.9	$\mathbf{1 2 . 6}$

Source: AIHW derived from the ABS National Health Survey 1995.

Action taken for a recent cardiovascular condition by sex

After adjusting for age, 96.3% of males and 94.9% of females who reported a recent cardiovascular condition reported taking some action for the condition (Table 7). Males (99.7%) were more likely than females (88.6%) to report taking action for 'other diseases of the circulatory system'. Females were more likely than males to take action for hypertension and 'ill-defined signs and symptoms of heart conditions' (Table 7).

Table 7: Percentage ${ }^{(a)}$ of people reporting taking action for a recent cardiovascular condition by sex, 1995

Type of condition	Males	Females
	Per cent (SE)	
Hypertension	$69.9(1.2)$	$90.1(1.3)$
Heart disease	$81.4(2.6)$	$80.6(3.1)$
Atherosclerosis	$24.6(3.5)$	$24.6(4.7)$
Cerebrovascular disease (b)	$50.0(4.8)$	$45.5(5.1)$
Other diseases of the circulatory system	$99.7(3.2)$	$88.6(3.0)$
Ill-defined signs and symptoms of heart	$72.8(3.1)$	$89.0(3.5)$
conditions	$96.3(1.3)$	$94.9(1.2)$
All cardiovascular		

(a) Age-standardised to the mid-1991 total Australian population.
(b) Includes after-effects of stroke.

SE: Standard error
Source: AIHW derived from the ABS National Health Survey 1995.

Visiting a doctor was the most commonly reported action taken for a recent cardiovascular condition among both males (21.0\%) and females (22.8\%) (Table 8).
Males were more likely than females to report a day of reduced activity for a recent cardiovascular condition (7.3% compared to 2.5%) and a day off work or school $(5.0 \%$ compared to 1.6%) (Table 8). However, this may reflect that fewer women are among the employed workforce.

Table 8: Percentage ${ }^{(a)}$ of people reporting taking action for a recent cardiovascular condition by action taken and sex, 1995

Action taken	Males	Females
	Per cent (SE)	
Doctor consultation	$21.0(0.9)$	$22.8(1.0)$
Consulted other health professional	$0.8(0.1)$	$4.0(0.5)$
Day of reduced activity	$7.3(0.7)$	$2.5(0.2)$
Day off work or school	$5.0(0.8)$	$1.6(0.4)$

(a) Age-standardised to the mid-1991 total Australian population.

SE: Standard error
Source: AIHW derived from the ABS National Health Survey 1995.

Action taken for a recent cardiovascular condition by State and Territory

After age standardisation, the proportions of people taking some action for a recent cardiovascular condition varied between the States and Territories from 98.2% in Queensland to 69.0% in the Australian Capital Territory. The proportions of people taking action for heart disease varied from 68.7% in Queensland to 45.1% in Western Australia (Table 9).

Table 9: Percentage ${ }^{(a)}$ of people reporting taking action for a recent cardiovascular condition by State and Territory, 1995

| Type of condition | NSW | Vic | Qld | WA | SA | Tas | ACT | NT |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(a) Age-standardised to the mid-1991 total Australian population.
(b) Does not include atherosclerosis, cerebrovascular disease or after-effects of stroke.
(c) Includes atherosclerosis, cerebrovascular disease and after-effects of stroke.

SE: Standard error

* Estimate subject to high sampling variability.

Source: AIHW derived from the ABS National Health Survey 1995.

Estimates from the Survey of Morbidity and Treatment in General Practice in Australia 1990-91

Cardiovascular problems managed

On average, 147 problems were managed at every 100 encounters. Of all problems managed, 45.2% were new problems. A new problem is one that is new to the patient and has not been treated by a general practitioner before; it is the first consultation for a new episode of an acute problem, or the first consultation for a new chronic problem (Bridges-Webb et al. 1992).

In 1990-91, cardiovascular conditions were the second most frequently managed problems in general practice after respiratory conditions (Bridges-Webb et al. 1992). Cardiovascular problems accounted for 12.5% of all problems managed and were managed at an average rate of 18.4 problems per 100 encounters (Table 10). Approximately 14% of cardiovascular problems managed were new problems (Table 11).
For both males and females, the average number of cardiovascular problems managed per 100 encounters rose with age (Figure 1). In the younger age groups (<25 years) there was little difference between males and females in the rate of problems managed. Between the ages of 25 and 74 years, males had higher rates of cardiovascular problems managed per 100 encounters than females. However, from age 75 years onwards, the rate of cardiovascular problems managed was higher for females than males.
During the survey period there were 98,789 patient encounters. At least one cardiovascular problem was managed at 16,486 of these encounters (16.7%) (Table 10). At 90% of these encounters only one cardiovascular problem was managed. However at 9%, two cardiovascular problems were managed while at the remaining 1%, three cardiovascular problems were managed.

Of all specific conditions managed in general practice in 1990-91, hypertension was the most frequent (Sayer et al. 1994). It accounted for 6.4% of all problems managed, and an average of 9.5 hypertension problems were managed at every 100 encounters (Table 10). Only 5% of all hypertension problems managed were new, reflecting the chronic nature of hypertension (Table 11).
The rate of hypertension problems managed per 100 encounters peaked for both males and females in the 65-74 year age group (Figure 2). From age 65 years, the average number of hypertension problems managed per 100 encounters was higher for females than males.
Other frequently managed cardiovascular conditions were heart failure, 'other and chronic coronary heart disease', angina and cerebrovascular disease (Table 10). For each of these conditions, the average number of problems managed per 100 encounters increased with age, and males tended to have higher rates of problems managed than females (Figure 3).

Table 10: Problems managed and patient encounters ${ }^{(a)}$ for cardiovascular conditions, 1990-91

Condition	ICPC code(s) ${ }^{\text {(b) }}$	Number of patient encounters	Number of problems managed	Percentage of all problems managed ($\mathrm{N}=145,645$)	Problems managed per 100 encounters ($\mathrm{N}=98,789$)
Rheumatic heart disease	K71	49	49	<0.1	<0.1
Angina	K74	731	731	0.5	0.7
Acute myocardial infarction	K75	71	71	<0.1	0.1
'Other and chronic coronary heart disease'	K76	1,347	1,347	0.9	1.4
All coronary heart disease	K74, K75, K76	2,131	2,149	1.5	2.2
Heart failure	K77	1,621	1,621	1.1	1.6
Hypertension	K86, K87	9,348	9,351	6.4	9.5
Cerebrovascular disease	K89, K90	614	615	0.4	0.6
Atherosclerosis	K91	44	44	<0.1	<0.1
Peripheral vascular disease	K92	427	427	0.3	0.4
All cardiovascular conditions	K	16,486	18,194	12.5	18.4

(a) Number of encounters where at least one problem was managed for the condition.
(b) Refer to Appendix D.

Source: AIHW derived from the Survey of Morbidity and Treatment in General Practice in Australia 1990-91.

Table 11: Distribution of new and old cardiovascular problems managed, 1990-91

Condition	ICPC code(s) ${ }^{(\mathbf{a})}$	Problem status		
		New problems	Old problems	Unknown status
		Per cent		
Rheumatic heart disease	K71	3.8	85.2	10.9
Angina	K74	17.5	77.6	4.9
Acute myocardial infarction	K75	42.2	55.1	2.7
'Other and chronic coronary heart disease'	K76	6.3	88.0	5.7
All coronary heart disease	K74, K75, K76	11.3	83.4	5.3
Heart failure	K77	10.2	82.8	7.0
Hypertension	K86, K87	5.4	89.2	5.4
Cerebrovascular disease	K89, K90	26.8	68.6	4.7
Atherosclerosis	K91	14.2	79.4	6.4
Peripheral vascular disease	K92	23.1	72.0	4.9
All cardiovascular conditions	K	13.6	80.0	6.4

(a) Refer to Appendix D.

Source: AIHW derived from the Survey of Morbidity and Treatment in General Practice in Australia 1990-91.

Problems managed per 100 encounters

Refer to Table S2
Source: AIHW derived from the Australian Survey of Morbidity and Treatment in General Practice 1990-91.
Figure 1: Cardiovascular problems, age-sex specific rates per 100 encounters, 1990-91

Problems managed per 100 encounters

Refer to Table S3
Source: AIHW derived from the Australian Survey of Morbidity and Treatment in General Practice 1990-91.
Figure 2: Hypertension problems, age-sex specific rates per 100 encounters, 1990-91

Problems managed per 100 encounters

Problems managed per 100 encounters

Problems managed per 100 encounters

Problems managed per 100 encounters

-— Females

Refer to Tables S4-S7
Source: AIHW derived from the Australian Survey of Morbidity and Treatment in General Practice 1990-91.
Figure 3: Other frequently managed cardiovascular problems, age-sex specific rates per 100 encounters, 1990-91

Treatment other than prescribing

For each problem managed, doctors were asked to record therapeutic procedures, other procedures, and counselling and advice given (Bridges-Webb et al. 1992). Up to four such treatments could be recorded for each problem managed.
When interpreting the results in this section, it should be remembered that the survey only collected information about treatment provided at the recorded encounter. No information was collected about treatment provided at previous encounters that were not included in the
survey, even if the same problem was managed. This may be a limitation for chronic conditions.
A list of treatments recorded in the Survey of Morbidity and Treatment in General Practice in Australia 1990-91 is provided in Appendix E.
The unit record data set provided to the Australian Institute of Health and Welfare included information relating to a total of 39,681 treatments, an average of 40.2 treatments per 100 encounters and 27.2 treatments per 100 problems managed. At least one treatment was recorded at 32.8% of all encounters and for 24.6% of all problems managed.
A total of 2,306 treatments was recorded for cardiovascular problems under management (Table 12). This represented 5.8% of all treatments recorded during the survey period. At least one treatment was recorded for 11.3% of all cardiovascular problems managed.
Although hypertension was the most frequently managed problem in general practice in 1990-91, non prescription treatment for the condition was recorded at only 7.9% of all problems managed for hypertension (Table 12). Sayer et al. (1994) suggest that, due to the chronic nature of hypertension, treatment such as advice and counselling may well have been given at previous visits.
At least one treatment was recorded for nearly one quarter of all peripheral vascular disease problems under management and for 18.7% of all cerebrovascular disease problems (Table 12).

Table 12: Number of treatments recorded for cardiovascular conditions

	Number of problems managed for condition for	Percentage of problems managed for condition	Total number of treatments recorded for condition treatment recorded	Percentage of all treatments recorded
$(\mathbf{N = 3 9 , 6 8 1)}$				

Source: AIHW derived from the Survey of Morbidity and Treatment in General Practice in Australia 1990-91.
Overall, unspecified advice was the most frequently recorded treatment for cardiovascular conditions (Table 13). The next four most commonly recorded treatments for managing cardiovascular disease were counselling about nutrition and weight, providing reassurance and support; treatment advice such as bed rest; and advice to increase drug dosage.
Advice to increase drug dosage was the most frequent form of treatment for heart failure. For hypertension, counselling about nutrition and weight was most commonly given, while for peripheral vascular disease, counselling about smoking was the most frequently recorded treatment. Unspecified advice was the treatment most frequently recorded for angina, 'other and chronic coronary heart disease', and cerebrovascular disease.

Table 13: Five most frequent types of treatment recorded for selected cardiovascular conditions

Condition/treatment	Number of treatments recorded	Percentage of all treatments recorded for condition	Treatments recorded per 100 problems managed for condition
All cardiovascular disease (K)			
Advice Not Otherwise Specified	320	13.9	1.8
Counselling—nutrition/weight	302	13.1	1.7
Reassurance, support	232	10.1	1.3
Treatment advice ${ }^{(a)}$	214	9.3	1.2
Advice to increase drug dosage	162	7.0	0.9
Angina (K74)			
Advice Not Otherwise Specified	14	20.9	1.8
Counselling—health not elsewhere classified	9	13.5	1.2
Treatment advice ${ }^{(a)}$	7	10.7	0.9
Advice to increase drug dosage	6	8.7	0.8
Counselling-smoking	5	7.4	0.7
Other and chronic coronary heart disease			
Advice Not Otherwise Specified	24	19.8	1.7
Counselling-health not elsewhere			
classified	13	10.3	0.9
Reassurance, support	11	9.0	0.8
Treatment advice ${ }^{(a)}$	11	8.9	0.8
Counselling-nutrition/weight	10	8.0	0.7
Heart failure (K77)			
Advice to increase drug dosage	37	30.2	2.3
Treatment advice ${ }^{(a)}$	20	16.5	1.3
Reassurance, support	12	9.9	0.8
Advice Not Otherwise Specified	9	6.9	0.5
Advice to decrease drug dosage	8	6.7	0.5
Hypertension (K86, K87)			
Counselling—nutrition/weight	184	22.3	2.0
Advice to increase drug dosage	95	11.5	1.0
Advice Not Otherwise Specified	94	11.4	1.0
Advice to stop medication	62	7.5	0.7
Treatment advice ${ }^{(a)}$	53	6.4	0.6
Cerebrovascular disease (K89, K90)			
Advice Not Otherwise Specified	23	18.5	3.7
Treatment advice ${ }^{(a)}$	15	12.4	2.5
Reassurance, support	15	12.2	2.5
Counselling-health not elsewhere classified	13	10.8	2.2
Rest ordered	10	7.9	1.6
Peripheral vascular disease (K92)			
Counselling-smoking	15	13.3	3.6
Bandage/dressing (b)	12	10.7	2.9
Treatment advice ${ }^{(a)}$	11	9.3	2.5
Exercise	10	8.8	2.4
Advice Not Otherwise Specified	10	8.7	2.3

[^3](b) E.g. clean wound

[^4]
National Heart Foundation Risk Factor Prevalence Study

The 1989 survey of the National Heart Foundation Risk Factor Prevalence Study asked whether respondents had ever been told whether they had any of the following conditions (Risk Factor Prevalence Study Management Committee 1990):

- high blood pressure
- angina
- heart attack (a 'coronary', coronary occlusion, coronary thrombosis, myocardial infarction)
- stroke
- high cholesterol
- high triglycerides.

The survey also asked whether respondents were:

- on tablets for blood pressure;
- having treatment to lower blood fat; and
- on tablets or other treatment for angina.

Similar data were collected in surveys run by the National Heart Foundation in 1980 and 1983. Consistency in survey methods allows trends analysis over this period.

Results

Among males aged 20 to 69 years and living in Australian capital cities in 1989, 17.0\% reported having been told that they had high blood pressure (Table 14). For females, the corresponding proportion was 19.7%. The prevalence tended to increase with age for both males and females. Eight per cent of males and females reported being on tablets for blood pressure (Table 15).
An average of 3% of males and 2% of females reported having been told they had angina, and about 1% of males and females were on tablets or other treatment for angina (Tables 14 \& 15).
Two per cent of males and 1% of females reported being told they had suffered a heart attack (Table 14). In each age group, the prevalence was generally higher for males than females.

Fewer than 1% of males and females reported having been told they had suffered a stroke.
Males were more likely than females to have been told they had high cholesterol (Table 14). This was also true for high triglycerides. Three per cent of males and 2% of females reported having treatment to lower blood fat (Table 15).

Table 14: Percentage of males and females reporting cardiovascular conditions, 1989

Sex/Condition	Age (years)										
	20-24	25-29	30-34	35-39	40-44	45-49	50-54	55-59	60-64	65-69	
Males											
High blood pressure	5.1	6.3	12.9	15.6	15.0	21.0	22.2	32.1	32.4	36.0	17.0
Angina	-	0.4	0.2	0.2	0.7	2.7	5.1	7.4	12.7	12.4	2.9
Heart attack	-	0.0	0.6	0.1	1.1	2.9	2.6	6.5	10.1	10.4	2.4
Stroke	-	0.2	-	0.1	0.1	0.0	1.3	2.5	2.8	5.3	0.8
High cholesterol	2.7	5.0	9.0	12.3	21.2	23.1	25.8	29.2	25.7	21.1	15.3
High triglycerides	0.8	0.4	2.7	6.0	9.5	8.0	13.9	13.1	12.9	10.8	6.6
Females											
High blood pressure	6.1	10.8	14.0	15.5	14.7	19.3	32.0	33.4	38.0	47.5	19.7
Angina	-	0.0	0.2	1.5	0.9	0.3	1.8	2.4	5.9	11.7	1.8
Heart attack	0.1	-	0.2	0.3	1.0	0.0	1.2	1.6	4.1	5.9	1.1
Stroke	-	0.1	-	-	0.5	0.1	0.8	0.6	1.9	3.6	0.5
High cholesterol	3.9	4.9	6.2	5.5	8.5	9.6	16.0	32.4	30.3	28.8	11.8
High triglycerides	0.1	0.8	0.6	1.5	1.0	2.5	5.0	8.4	6.4	7.1	2.6
Note: 0.0 denotes < 0.05											

Table 15: Percentage of males and females having treatment for cardiovascular conditions, 1989

Sex/Treatment	Age (years)										Total (20-69 years)
	20-24	25-29	30-34	35-39	40-44	45-49	50-54	55-59	60-64	65-69	
Males											
On tablets for blood pressure	0.8	0.5	0.8	3.6	6.6	6.1	13.6	20.3	24.8	30.3	7.9
On tablets or other treatment for angina	-	0.2	-	0.2	0.1	0.6	2.6	3.8	8.0	5.6	1.4
Having treatment to lower blood fat	-	0.2	3.0	2.1	2.6	4.6	6.3	6.6	6.0	10.6	3.3
Females											
On tablets for blood pressure	0.3	0.3	1.2	0.9	4.5	8.3	15.8	20.5	29.1	35.5	8.4
On tablets or other treatment for angina	0.1	-	0.1	0.0	0.6	-	0.9	1.5	3.2	7.0	0.9
Having treatment to lower blood fat	-	0.0	0.1	0.8	0.6	1.1	3.1	6.2	8.6	11.2	2.2

Source: Risk Factor Prevalence Study Management Committee 1990.

Hunter Region Heart Disease Prevention Programme Risk Factor Prevalence Study

The 1994 survey of the Hunter Region Heart Disease Prevention Programme Risk Factor Prevalence Study asked whether respondents had ever been told whether they had any of the following conditions (Alexander et al. 1995):

- angina
- heart attack (a 'coronary', coronary occlusion, coronary thrombosis, myocardial infarction)
- stroke
- high triglycerides.

Respondents were also asked if they had ever been told by a doctor or other medical person that they had high blood pressure, and whether they were currently having treatment with medications for high blood pressure.
For blood cholesterol, respondents were asked if they had ever been told by a doctor or medical person that they had high cholesterol. Participants in the main study who answered yes were then asked whether they were on medication, or a special diet prescribed by a doctor or other medical person for high cholesterol.
Respondents in the main study were also asked if they had ever had pain or discomfort in their chest. If they answered yes, they were then asked if they sought medical attention for it and if they had ever been referred to a heart specialist for it.

Summary of results

In 1994, 5\% of males and 3\% of females aged 35 to 64 years and living in the Hunter region of New South Wales reported having been told they had angina (Alexander et al. 1995). The reported prevalence of heart attack among males was 3%, while for females it was 2%. One per cent of males and 2% of females reported having been told that they had suffered a stroke.
Chest pain or discomfort had been experienced by 44% of males and 41% of females aged 35 to 64 years and living in the Hunter region of New South Wales in 1994. Of those who had experienced chest pain or discomfort, 64% of males and 72% of females had sought medical attention for it, and 27% of males and 18% of females had been referred to a heart specialist for it.
More than one quarter of Hunter region residents aged 35 to 64 years reported having been told they had high blood pressure (26% of males and 30% of females). Fourteen per cent of males and females were taking medication for high blood pressure in 1994.
Males were more likely than females to have been told they had high triglycerides (7\% compared to 4%). Similarly more males than females reported having been told they had high cholesterol (28% compared to 20%). Of those with high cholesterol, most were using no treatment for it (68% of males and 64% of females). Fifteen per cent of males and 21% of females with high cholesterol were on a special diet to control it; 12% of males and 7% of females were using medication for it; and 5% of males and 9% of females were using a combination of special diet and medication to control it.

Hospital care

Introduction

This chapter presents information on hospital care for cardiovascular disease in Australia. Detailed analysis from three national sources of data (the National Hospital Morbidity Database; Medicare and Department of Veterans' Affairs medical benefits data; and the Australian Bureau of Statistics' National Health Survey 1995) are presented as well as results from several other sources (the National Heart Foundation cardiac surgery and coronary angioplasty registers; 1994-95 Australian casemix data; the 1995 Public Hospital Elective Surgery Waiting List Survey; the Australian and New Zealand Cardiothoracic Organ Transplant Registry; and the Newcastle MONICA project).
The limitations of the national data sources, as discussed in the chapter National data sources, should be kept in mind when interpreting the results presented here.

Data sources

- The National Hospital Morbidity Database. National estimates are provided for the number of separations and the average length of stay for cardiovascular conditions and cardiovascular procedures in public acute (including the Department of Veterans' Affairs hospitals) and private hospitals in 1995-96.
- Medicare and Department of Veterans' Affairs medical benefits data. National information is provided on the number of medical services provided and benefits paid for cardiovascular medical services that qualify for benefits under Medicare or the Department of Veterans' Affairs medical benefits schemes in 1992-93, 1993-94 and 1994-95.
- The Australian Bureau of Statistics' National Health Survey 1995 (Australian Bureau of Statistics 1997a; 1997b). Provides national estimates of the self-reported prevalence of recent hospitalisation (i.e. in the two weeks prior to interview) and hospitalisation in the 12 months prior to interview, for cardiovascular conditions.
- The National Heart Foundation cardiac surgery register (National Heart Foundation of Australia 1996a). Provides information on all cardiac surgery performed in Australia since 1953.
- The National Heart Foundation coronary angioplasty register (National Heart Foundation of Australia 1996b). Provides information on all coronary angioplasty performed in Australia since 1980.
- Australian casemix data (Commonwealth Department of Health and Family Services 1996b). Provides information on hospital activity for cardiovascular disease as measured by Australian National Diagnosis Related Groups (AN-DRGs).
- The 1995 Public Hospital Elective Surgery Waiting List Survey (Moon 1996). Provides information about elective surgery waiting lists in Australian public hospitals. Data relevant to this report are available for cardiothoracic surgery, neurosurgery and vascular surgery.
- The Australian and New Zealand Cardiothoracic Organ Transplant Registry (Australian and New Zealand Cardiothoracic Organ Transplant Registry 1997). The sixth annual report provides information about all heart and heart-lung transplants performed in Australia and New Zealand between February 1984 and December 1996.
- The Newcastle MONICA project (Steele \& McElduff 1995a; Steele \& McElduff 1995b). The Newcastle MONICA Project collected data on all suspected cases of heart attack or coronary death among residents aged 25 to 69 years in the local government areas of Newcastle, Lake Macquarie, Maitland, Cessnock and Port Stephens. The study was conducted over a 10-year period and registration began in August 1984. Information on acute care was collected.

The National Hospital Morbidity Database

For 1995-96, the National Hospital Morbidity Database includes all public acute hospitals in Australia, except those that are not within the jurisdiction of a State or Territory health authority or the Department of Veterans' Affairs. All private acute and psychiatric hospitals are also included except the private hospital in the Northern Territory and the private freestanding day hospital facilities in the Australian Capital Territory. The National Hospital Morbidity Database also includes public psychiatric hospitals except for Queensland; however, these data have not been included in this report.
This section presents summary statistics on separations and average length of stay for cardiovascular conditions and cardiovascular procedures in public acute (including the Department of Veterans' Affairs hospital) and private hospitals in 1995-96.
In 1995-96 there were 5,151,094 hospital separations from public acute and private hospitals in Australia (Australian Institute of Health and Welfare 1997a). The average length of stay for a separation (including same day separations) was 4.3 days.
In 1995-96, the National Hospital Morbidity Database included information on principal diagnosis and up to 20 additional diagnoses (Australian Institute of Health and Welfare 1997a).

Box 7: Cardiovascular conditions codes	
Information is provided in this section for the following cardiovascular conditions:	
Condition	ICD-9-CM diagnostic code
Rheumatic heart disease	$390-398$
Hypertensive disease	$401-405$
Acute myocardial infarction	410
Coronary heart disease	$410-414$
Heart failure	428
Cerebrovascular disease	$430-438$
Peripheral vascular disease	$441-444$
All cardiovascular disease	$390-459$
Chest pain with heart disease	$786.5+(410-414$ or $420-429)$

Cardiovascular disease as principal diagnosis only

Eight per cent of all public acute and private hospital separations in 1995-96 were associated with a principal diagnosis of cardiovascular disease (Table 16). Of those separations, 37% were due to coronary heart disease, 12% to cerebrovascular disease and 10% to heart failure.

Table 16: Separations and average length of stay for principal diagnosis of cardiovascular conditions by sex, public acute and private hospitals, Australia, 1995-96

Condition/sex	Number of separations	Average length of stay (days)	Crude rate ${ }^{(a)}$	Agestandardised rate ${ }^{(b)}$	95\% confidence interval for agestandardised rate
Males					
Rheumatic heart disease	727	7.6	8.0	8.1	7.5-8.7
Hypertensive disease	3,121	6.2	34.3	34.6	33.3-35.8
Acute myocardial infarction	21,818	6.7	239.6	243.6	240.4-246.9
Coronary heart disease	99,557	5.1	1,093.5	1,103.7	1,096.9-1,110.4
Heart failure	20,187	8.9	221.7	243.2	239.9-246.6
Cerebrovascular disease	26,382	11.6	289.8	309.4	305.6-313.1
Peripheral vascular disease	9,488	9.1	104.2	110.0	107.8-112.2
All cardiovascular disease	231,283	6.2	2,540.3	2,608.2	2,598.0-2,618.3
Chest pain with heart disease ${ }^{(\mathrm{c})}$	5,820	2.7	63.9	64.4	62.7-66.0
Females					
Rheumatic heart disease	1,192	7.5	13.0	12.2	11.5-12.9
Hypertensive disease	5,324	8.3	58.0	50.9	49.5-52.3
Acute myocardial infarction	11,183	8.0	121.8	101.5	99.6-103.4
Coronary heart disease	53,179	5.7	579.0	500.6	496.3-504.8
Heart failure	20,523	10.4	223.5	169.3	167.0-171.6
Cerebrovascular disease	24,906	13.5	271.2	217.3	214.6-220.1
Peripheral vascular disease	4,844	9.0	52.7	43.8	42.6-45.1
All cardiovascular disease	181,502	7.1	1,976.2	1,698.5	1,690.8-1,706.2
Chest pain with heart disease ${ }^{(c)}$	4,390	3.1	47.8	41.8	40.5-43.0

(a) Separations per 100,000 mid-1996 total Australian population.
(b) Age-standardised to the mid-1991 total Australian population.
(c) Principal diagnosis of chest pain plus additional diagnosis of heart disease.

For each of the cardiovascular conditions included here, hospital separation rates tended to increase with age but were usually higher among males and females under the age of 1 year than among children aged 1-15 years (Figures 4-6).
Age-specific and age-standardised separation rates indicate that, in 1995-96, males were significantly more likely than females to have a principal diagnosis of cardiovascular disease (Figure 4, Table 16). In general, males also had significantly higher separation rates than females for principal diagnoses of coronary heart disease, heart failure, cerebrovascular disease, peripheral vascular disease and chest pain associated with heart disease (Figures 56 , Table 16). However, separation rates for principal diagnoses of rheumatic heart disease and hypertensive disease tended to be higher among females than males.
The average length of stay associated with a principal diagnosis of cardiovascular disease was 6.6 days in 1995-96 (based on a total of 2,722,415 patient days). Of the specific cardiovascular conditions included here, cerebrovascular disease had the longest average
length of stay (12.5 days), followed by heart failure (9.6 days), peripheral vascular disease (9.1 days), rheumatic heart disease and hypertensive disease (7.5 days), acute myocardial infarction (7.2 days), and coronary heart disease (5.3 days). Patients with a principal diagnosis of chest pain associated with heart disease had an average length of stay of 2.9 days.
Although males generally had higher separation rates than females for principal diagnosis of cardiovascular conditions, females tended to have slightly longer average lengths of stay for most of these conditions than males (Table 16).

(a) Separations per 100,000 1996 mid-year population for each age group.

Refer to Table S17

Figure 4: Age-specific hospital separation rates for principal diagnosis of cardiovascular disease by sex, public acute and private hospitals, Australia, 1995-96

(a) Separations per 100,000 1996 mid-year population for each age group.

Refer to Tables S22-S25
Figure 6: Age-specific hospital separation rates for principal diagnosis of heart failure, cerebrovascular disease, peripheral vascular disease, and chest pain with heart disease by sex, public acute and private hospitals, Australia, 1995-96

Cardiovascular disease as principal or additional diagnosis

Almost one fifth of all public acute and private separations in 1995-96 were associated with at least one diagnosis of cardiovascular disease (1,027,934 separations).
The number of separations with a diagnosis of hypertensive disease increased dramatically when principal or additional diagnosis was considered and accounted for 9% (464,890 separations) of all separations in 1995-96. This indicates that most (98\%) hypertensive
disease was reported as a comorbidity rather than as a principal diagnosis (2%). In contrast, acute myocardial infarction was reported as the principal diagnosis in 69% of separations where it was diagnosed.
With the exception of rheumatic heart disease, males had higher age-standardised separation rates than females for all the cardiovascular conditions included here but females had slightly higher average lengths of stay than males (Table 17).

Table 17: Separations and average length of stay for principal or additional diagnosis of cardiovascular conditions by sex, public acute and private hospitals, Australia, 1995-96

Condition/sex	Number of separations ${ }^{(a)}$	Average length of stay (days)	Crude $\operatorname{rate}^{(b)}$	Age-standardised rate ${ }^{(c)}$	95\% confidence interval for agestandardised rate
Males					
Rheumatic heart disease	3,522	8.7	38.7	40.7	39.3-42.0
Hypertensive disease	210,616	6.3	2,313.3	2,388.8	2,379.0-2,398.5
Acute myocardial infarction	31,317	7.3	344.0	350.9	347.0-354.8
Coronary heart disease	212,291	6.4	2,331.7	2,425.5	2,415.7-2,435.2
Heart failure	72,462	10.5	795.9	878.7	872.6-884.9
Cerebrovascular disease	60,176	14.0	660.9	708.6	703.0-714.1
Peripheral vascular disease	33,464	10.6	367.6	392.4	388.2-396.5
All cardiovascular disease ${ }^{(d)}$	524,275	7.2	5,758.3	5,984.0	5,970.1-5,997.9
Chest pain with heart disease ${ }^{(\mathrm{e})}$	7,867	4.0	86.4	87.7	85.7-89.6
Females					
Rheumatic heart disease	6,564	8.6	71.5	62.6	61.1-64.1
Hypertensive disease	254,274	7.4	2,768.5	2,371.2	2,362.3-2,380.1
Acute myocardial infarction	16,556	9.8	180.3	149.1	146.8-151.4
Coronary heart disease	144,661	8.4	1,575.1	1,294.8	1,288.3-1,301.3
Heart failure	81,020	13.0	882.1	667.0	662.5-671.5
Cerebrovascular disease	54,700	16.8	595.6	476.5	472.5-480.5
Peripheral vascular disease	20,336	11.6	221.4	182.2	179.6-184.7
All cardiovascular disease ${ }^{(d)}$	503,659	8.5	5,483.8	4,675.2	4,663.4-4,687.1
Chest pain with heart disease ${ }^{(\mathrm{e})}$	6,320	4.9	68.8	59.5	58.0-61.0

(a) Only one diagnosis per separation counted for each condition.
(b) Separations per 100,000 mid-1996 total Australian population.
(c) Age-standardised to the mid-1991 total Australian population.
(d) Components do not add to totals as each separation may have more than one type of cardiovascular condition reported.
(e) Principal or additional diagnosis of chest pain plus principal or additional diagnosis of heart disease.

Cardiovascular procedures

In 1995-96, the National Hospital Morbidity Database included information on principal procedure and up to 28 additional procedures.
Commonly recorded cardiovascular procedures in 1995-96 included diagnostic cardiac catheterisation, open heart coronary artery bypass surgery, diagnostic ultrasound, percutaneous transluminal coronary angioplasty (PTCA), percutaneous intracoronary stent implant, cardiac pacemaker insertion, electrophysiology studies, and cardiac stress tests and pacemaker checks (Tables 18 \& 19).

Box 8: Cardiovascular procedures explanatory notes

Information is provided here for major cardiac procedures, and for other cardiovascular operations and investigations. For each type of procedure, a separation was counted once only if it included a principal or additional procedure in the appropriate range. Separations were identified for the following procedures:

Procedure	ICD-9-CM procedure code
Open heart-valve surgery	
Reconstruction	35.1
Replacement	35.2
Interventional cardiology	
Percutaneous transluminal coronary angioplasty (PTCA)	36.01, 36.02, or 36.05
Percutaneous intracoronary stent implant	36.06
Other	35.96, 36.04, or 36.09
Open heart-coronary bypass surgery	
Coronary bypass surgery	36.1
Coronary bypass surgery with valve procedure	36.1 \& (35.1 or 35.2)
Coronary bypass surgery with excision of aneurysm or infarct	36.1 \& (37.32 or 37.33)
Coronary bypass surgery with repair of ventricular septal defect	36.1 \& (35.50, $35.53,35.60,35.62,35.70$, or 35.72)
Other cardiothoracic surgery	
With cardiopulmonary bypass	39.61 \& (35.00-35.04, 35.31-35.39, 35.42, 35.50-35.99, 36.03, 36.20-36.99, 37.10-37.12, 37.24, 37.31-37.33, $37.4,37.61-37.64,37.91,37.99,38.05,38.15,38.35$, $38.45,38.55,38.65,38.85,39.00,39.21$, or 39.23)
Without cardiopulmonary bypass	No procedure code of 39.61 \& (35.00-35.04, 35.31-35.39, 35.42, 35.50-35.99, 36.03, 36.20-36.99, 37.10-37.12, $37.24,37.31-37.33,37.4,37.61-37.64,37.91,37.99$, 38.05, 38.15, 38.35, 38.45, 38.55, 38.65, 38.85, 39.00, 39.21, or 39.23)
Other cardiovascular procedures	
Catheter ablation of lesion of heart	37.34
Electrophysiology studies	37.26 or 37.27
Heart or heart-lung transplant	37.5 or 33.6
Cardiac pacemaker device insertion (permanent)	37.80-37.87
Implantation of automatic implantable cardiac defibrillator (AICD)	37.94-37.98
Operations on vessels	38 or 39
Diagnostic and nonsurgical procedures	
Arteriography using contrast material	88.40-88.45 or 88.47-88.49
Cardiac catheterisation (diagnostic) or angiocardiography using contrast material	$37.21-37.23$ or 88.5
Coronary arteriography	88.55-88.57
Other angiocardiography using contrast medium	88.50-88.54 or 88.58
Diagnostic ultrasound	88.72 or 88.77
Cardiac stress tests and pacemaker checks	89.4
Other non-operative cardiac and vascular diagnostic procedures	89.5

Table 18: Separations and average length of stay for cardiovascular procedures for males, public acute and private hospitals, Australia, 1995-96

Procedure	Number of separations ${ }^{(a)}$	Average length of stay (days)	Crude rate ${ }^{(b)}$	Agestandardised $\text { rate }^{(c)}$	95\% confidence interval for agestandardised rate
Open heart valve surgery					
Reconstruction	335	11.9	3.7	3.7	3.3-4.1
Replacement	2,043	13.7	22.4	22.9	21.9-23.9
Interventional cardiology					
Percutaneous transluminal coronary angioplasty (PTCA)	9,086	4.2	99.8	97.6	95.6-99.6
Percutaneous intracoronary stent implant	2,762	4.8	30.3	29.6	28.5-30.7
Other	153	6.7	1.7	1.7	1.4-1.9
Open heart coronary bypass surgery					
Coronary bypass surgery	13,492	11.3	148.2	148.3	145.8-150.8
Coronary bypass surgery with valve procedure	882	13.6	9.7	10.1	$9.4-10.8$
Coronary bypass surgery with excision of aneurysm or infarct	51	13.2	0.6	0.6	0.4-0.7
Coronary bypass surgery with repair of ventricular septal defect	13	10.5	0.1	*0.2	0.1-0.2
Other cardiothoracic surgery					
With cardiopulmonary bypass	1,520	13.8	16.7	16.9	16.0-17.7
Without cardiopulmonary bypass	1,051	13.4	11.5	11.8	11.0-12.5
Other cardiovascular procedures					
Catheter ablation of lesion of heart	688	2.9	7.6	7.5	6.9-8.1
Electrophysiology studies	1,701	4.8	18.7	18.6	17.7-19.5
Heart or heart-lung transplant	85	19.7	0.9	0.9	0.7-1.1
Cardiac pacemaker device insertion (permanent)	3,455	5.5	38.0	41.2	39.8-42.6
Implantation of automatic implantable cardiac defibrillator (AICD)	214	13.6	2.4	2.4	2.0-2.7
Operations on vessels	252,271	3.3	2,770.8	2,767.4	2,756.9-2,777.9
Diagnostic and nonsurgical procedures					
Arteriography using contrast material	15,293	8.7	168.0	173.1	170.3-175.8
Cardiac catheterisation (diagnostic) or angiocardiography using contrast material	45,661	4.2	501.5	495.4	490.8-499.9
Coronary arteriography	42,870	4.0	470.9	464.8	460.4-469.2
Other angiocardiography using contrast medium	31,156	4.2	342.2	337.9	334.2-341.7
Diagnostic ultrasound	12,716	11.6	139.7	143.5	141.0-146.0
Cardiac stress tests and pacemaker checks	2,547	6.3	28.0	27.9	26.8-29.0
Other non-operative cardiac and vascular diagnostic procedures	3,409	6.5	37.4	38.9	37.6-40.2

(a) Principal or additional procedure; only one procedure per separation counted.
(b) Separations per 100,000 mid-1996 total Australian population.
(c) Age-standardised to the mid-1991 total Australian population.

* Estimate has a relative standard error greater than 25% and therefore should be interpreted with caution.

Table 19: Separations and average length of stay for cardiovascular procedures for females, public acute and private hospitals, Australia, 1995-96

Procedure	Number of separations ${ }^{(a)}$	$\begin{array}{r} \text { Average } \\ \text { length of } \\ \text { stay (days) } \end{array}$	Crude rate ${ }^{(b)}$	Agestandardised rate ${ }^{(c)}$	95\% confidence interval for agestandardised rate
Open heart valve surgery					
Reconstruction	245	13.2	2.7	2.6	2.3-3.0
Replacement	1,364	14.0	14.9	13.5	12.8-14.3
Interventional cardiology					
Percutaneous transluminal coronary angioplasty (PTCA)	3,168	5.2	34.5	32.2	31.1-33.4
Percutaneous intracoronary stent implant	874	6.0	9.5	8.9	8.3-9.5
Other	198	5.2	2.2	2.0	1.7-2.3
Open heart coronary bypass surgery					
Coronary bypass surgery	4,184	12.9	45.6	41.8	40.6-43.1
Coronary bypass surgery with valve procedure	372	15.4	4.1	3.6	3.2-3.9
Coronary bypass surgery with excision of aneurysm or infarct	23	16.8	0.3	*0.2	0.1-0.3
Coronary bypass surgery with repair of ventricular septal defect	17	13.2	0.2	*0.2	0.1-0.2
Other cardiothoracic surgery					
With cardiopulmonary bypass	1,027	13.4	11.2	11.2	10.5-11.9
Without cardiopulmonary bypass	847	11.7	9.2	9.1	8.4-9.7
Other cardiovascular procedures					
Catheter ablation of lesion of heart	844	2.3	9.2	9.0	8.4-9.6
Electrophysiology studies	1,469	3.1	16.0	15.5	14.7-16.3
Heart or heart-lung transplant	26	15.7	0.3	0.3	0.2-0.4
Cardiac pacemaker device insertion (permanent)	2,581	5.8	28.1	22.7	21.8-23.6
Implantation of automatic implantable cardiac defibrillator (AICD)	83	12.6	0.9	0.8	0.7-1.0
Operations on vessels	196,421	3.0	2,138.6	2,040.1	2,031.3-2,049.0

Diagnostic and nonsurgical procedures

Arteriography using contrast material	10,302	9.3	112.2	100.4	$98.4-102.3$
Cardiac catheterisation (diagnostic) or angiocardiography using contrast material	21,630	4.5	235.5	220.5	$217.6-223.4$
Coronary arteriography	20,155	4.4	219.5	204.7	$201.9-207.6$
Other angiocardiography using contrast medium	14,922	4.5	162.5	152.2	$149.7-154.6$
Diagnostic ultrasound Cardiac stress tests and pacemaker checks	10,843	11.8	118.1	105.6	$103.6-107.6$
Other non-operative cardiac and vascular diagnostic procedures	1,510	6.9	16.4	15.0	$14.3-15.8$

[^5]Separation rates for cardiovascular procedures were generally higher for males than females (Tables 18 \& 19, Figures 7-9). However, for most of the procedures included here, females tended to have slightly longer average lengths of stay than males.
Age-specific rates indicate a general increase in separations for cardiovascular procedures with age, particularly in the age groups from 15 to 74 years (Figures 7-9).

(a) Separations per 100,000 1996 mid-year population for each age group.

Refer to Tables S26-S29
Figure 7: Age-specific hospital separation rates for principal or additional procedure of cardiothoracic surgery by sex, public acute and private hospitals, Australia, 1995-96

(a) Separations per 100,000 1996 mid-year population for each age group.

Refer to Tables S30-S31
Figure 8: Age-specific hospital separation rates for principal or additional procedure of interventional cardiology by sex, public acute and private hospitals, Australia, 1995-96

(a) Separations per 100,000 1996 mid-year population for each age group.

Refer to Tables S32-S35

Figure 9: Age-specific hospital separation rates for principal or additional procedure of selected other cardiovascular procedures by sex, public acute and private hospitals, Australia, 1995-96

Cardiac procedures for congenital heart disease

Information is provided for cardiac procedures undertaken for congenital heart disease.
Of the congenital heart conditions included here, atrial septal defect was associated with the largest number of cardiac procedures for both males and females in 1995-96 (Tables 20 \& 21). This was followed by ventricular septal defect and valve defects.

The number of separations for persons with congenital heart conditions who underwent cardiac procedures was highest in the under 1 year age group for all the conditions included here. The separation rate per 100,000 population was higher for males under the age of one year than for females of the same age for all conditions except valve defects.
Among males, average length of stay was highest for those undergoing cardiac procedures for transposition of the great vessels (21.4 days) (Tables $20 \& 21$). For females, average length of stay was highest for patent ductus arteriosus (19.7 days). Among those aged under one year, females had higher average lengths of stay than males for patent ductus arteriosus, coarctation of aorta, atrial septal defect and valve defects.

Box 9: Congenital heart disease explanatory notes

For each category, a separation was counted once only if it included a principal or additional diagnosis of the relevant congenital condition as well as a principal or additional procedure in the appropriate range. Identification of separations was as follows:

Congenital heart condition (ICD-9-CM diagnostic code)	ICD-9-CM procedure codes
Transposition of the great vessels (745.1)	35.30-35.39, 35.81-35.99, 36.91-36.99, 37.31-37.5, $38.00,38.04,38.05,38.10,38.14,38.15,30.30,38.34$, $38.35,38.40,38.45,39.0,39.21,39.22$ or 39.23
Patent ductus arteriosus (747.0)	$\begin{aligned} & 35.30-35.39,35.81-35.99,36.91-36.99,37.31-37.5 \\ & 38.00,38.04,38.05,38.10,38.14,38.15,30.30,38.34 \\ & 38.35,38.40,38.45,39.0,39.21,39.22 \text { or } 39.23 \end{aligned}$
Coarctation of aorta (747.1)	$\begin{aligned} & 35.30-35.39,35.81-35.99,36.91-36.99,37.31-37.5 \\ & 38.00,38.04,38.05,38.10,38.14,38.15,30.30,38.34 \\ & 38.35,38.40,38.45,39.0,39.21,39.22 \text { or } 39.23 \end{aligned}$
Tetralogy of Fallot (745.2)	$\begin{aligned} & 35.00-36.99,37.10-37.12,37.31-37.5,38.00,38.04 \\ & 38.05,38.10,38.14,38.15,30.30,38.34,38.35,38.40 \\ & 38.45,39.0,39.2139 .22 \text { or } 39.23 \end{aligned}$
Ventricular septal defect (745.4)	35.50-35.99 or 37.4
Atrial septal defect (745.5)	35.50-35.99 or 37.4
Valve defects (746.0-746.6)	35.10-35.14, 35.20-35.28, 35.81-35.99 or 37.4

Table 20: Separations and average length of stay for cardiac procedures for congenital heart disease for males, public acute and private hospitals, Australia, 1995-96

Congenital heart condition	Age group (years)				
	< 1	1-4	5-14	15+	All ages
Transposition of the great vessels					
Number of separations ${ }^{(a)}$	70	24	8	6	108
Age-specific rate ${ }^{(b)}$	54.3	4.5	0.6	0.1	1.2
Average length of stay (days)	26.0	14.8	9.4	11.2	21.4
Patent ductus arteriosus					
Number of separations ${ }^{(a)}$	92	8	3	2	105
Age-specific rate ${ }^{(b)}$	71.4	1.5	0.2	0.0	1.2
Average length of stay (days)	23.1	5.1	2.0	12.0	20.9
Coarctation of aorta					
Number of separations ${ }^{(a)}$	44	8	12	9	73
Age-specific rate ${ }^{(b)}$	34.1	1.5	0.9	0.1	0.8
Average length of stay (days)	14.5	18.3	5.4	4.2	12.2
Tetralogy of Fallot					
Number of separations ${ }^{(a)}$	29	35	3	5	72
Age-specific rate ${ }^{(b)}$	22.5	6.6	0.2	0.1	0.8
Average length of stay (days)	16.5	11.6	27.7	9.0	14.1
Ventricular septal defect					
Number of separations ${ }^{(a)}$	88	68	20	15	191
Age-specific rate ${ }^{(b)}$	68.3	12.8	1.5	0.2	2.1
Average length of stay (days)	16.6	12.5	7.7	14.0	14.0
Atrial septal defect					
Number of separations ${ }^{(a)}$	78	51	27	59	215
Age-specific rate ${ }^{(b)}$	60.5	9.6	2.0	0.8	2.4
Average length of stay (days)	15.7	8.2	6.3	10.4	11.3
Valve defects					
Number of separations ${ }^{(a)}$	40	34	22	94	190
Age-specific rate ${ }^{(b)}$	31.0	6.4	1.7	1.3	2.1
Average length of stay (days)	13.2	10.4	6.8	12.0	11.4

[^6]Table 21: Separations and average length of stay for cardiac procedures for congenital heart disease for females, public acute and private hospitals, Australia, 1995-96

Congenital heart condition	Age group (years)				
	< 1	1-4	5-14	15+	All ages
Transposition of the great vessels					
Number of separations ${ }^{(a)}$	32	12	6	0	50
Age-specific rate ${ }^{(b)}$	26.2	2.4	0.5	0.0	0.5
Average length of stay (days)	14.3	12.8	7.3	0.0	13.1
Patent ductus arteriosus					
Number of separations ${ }^{(a)}$	54	17	6	3	80
Age-specific rate ${ }^{(b)}$	44.1	3.4	0.5	0.0	0.9
Average length of stay (days)	26.9	6.2	1.8	1.3	19.7
Coarctation of aorta					
Number of separations ${ }^{(a)}$	31	5	6	12	54
Age-specific rate ${ }^{(b)}$	25.3	1.0	0.5	0.2	0.6
Average length of stay (days)	21.2	6.6	6.8	6.4	15.0
Tetralogy of Fallot					
Number of separations ${ }^{(a)}$	24	24	5	5	58
Age-specific rate ${ }^{(b)}$	19.6	4.8	0.4	0.1	0.6
Average length of stay (days)	16.0	13.0	10.4	13.6	14.1
Ventricular septal defect					
Number of separations ${ }^{(a)}$	82	44	20	18	164
Age-specific rate ${ }^{(b)}$	67.0	8.8	1.6	0.2	1.8
Average length of stay (days)	16.7	11.8	8.0	11.3	13.7
Atrial septal defect					
Number of separations ${ }^{(a)}$	68	75	33	113	289
Age-specific rate ${ }^{(b)}$	55.6	14.9	2.6	1.5	3.2
Average length of stay (days)	17.1	7.0	6.6	8.6	9.9
Valve defects					
Number of separations ${ }^{(a)}$	39	42	19	39	139
Age-specific rate ${ }^{(b)}$	31.9	8.4	1.5	0.5	1.5
Average length of stay (days)	14.7	9.9	7.5	10.3	11.1

[^7]
Medicare and Department of Veterans' Affairs medical benefits data

This section describes the use of cardiovascular medical services covered by Medicare and the Department of Veterans' Affairs for the financial year 1994-95. Trend data for the period 1992-93 to 1994-95 are also presented. The data were provided by the Medicare Statistics Section of the Department of Health and Family Services and the Statistics Section of the Department of Veterans' Affairs. It should be noted that the data correspond to use of services for claims processed in the financial year under consideration, irrespective of when those services were provided. It should also be noted that Medicare data covers only about 75% of medical services (refer to the chapter National data sources).

Box 10: Cardiovascular medical diagnostic procedures and investigations codes

Information is provided here for the following groups of cardiovascular medical services:

Diagnostic procedures and investigations	Medical Benefits Schedule Item Number (as at 1 November 1995)
Cardiovascular	$11700-11715$
Pacemaker testing	11718,11721
Therapeutic procedures (operations)—vascular	
Arterial surgery (Bypass or anastomosis for occlusive arterial disease, bypass, replacement, ligation of aneurysms, endarterectomy and arterial patch, embolectomy, thrombectomy and vascular trauma)	$32700-32769,33100-33172$,
Transluminal balloon angioplasty	$33500-33554,33800-33848$
Transluminal stent insertion	$35300-35305$
Therapeutic procedures (operations)—cardiothoracic	$35306-35310$
Selective coronary arteriography	38215,38218
Permanent pacemakers insertion / replacement	$38250,38253,38259,38470,38473$
Heart catheterisation, electrophysiological studies and other miscellaneous	$38200-38212,38256$
cardiac procedures	$38480-38483,38387-38489$
Valvular procedures	$38497,38500,38503$
Coronary artery bypass	$38700-38766$
Congenital cardiac surgery	$59800-39818$
Therapeutic procedures (operations)—neurosurgical	$59900-59906$
Cerebrovascular disease	59912
Diagnostic imaging	$59915-59924,60000-60078$
Cardiac ultrasound	$61300-61323$
Serial angiocardiography	$55201-55237$
Celective coronary arteriography	302

Appendix G provides detailed information on the procedures and investigations that make up these groups.

Use of cardiovascular medical services in 1994-95

Overall use

In 1994-95, Medicare processed claims for 188.1 million medical services and the Department of Veterans' Affairs (DVA) processed claims for 11.2 million medical services (Health Insurance Commission 1995; Statistics Section, Department of Veterans' Affairs, personal communication). In comparison to the overall use of medical services, the incidence of cardiovascular Medicare and DVA services is small. The cardiovascular services included here accounted for just over 1\% (2.2 million services) of all Medicare and DVA medical services in 1994-95.
Of the 199.3 million medical services for which claims were processed by Medicare or the Department of Veterans' Affairs in 1994-95, 10.5 million services were for diagnostic imaging (10.0 million Medicare and 0.5 million DVA) and 5.6 million (5.1 million Medicare and 0.5 million DVA) were for operations. Cardiovascular diagnostic imaging accounted for 5% of all diagnostic imaging in 1994-95, while vascular, cardiothoracic and cerebrovascular operations accounted for 1% of all operations (Table 22).
Diagnostic procedures and investigations were the most frequently used services in 1994-95, accounting for 71% of all cardiovascular medical services (Table 22). The next three most common medical services for cardiovascular disease were cardiac ultrasound, vascular ultrasound and selective coronary arteriography.
The number of Medicare and DVA services for cerebrovascular operations and congenital cardiac surgery is small, however this may reflect higher 'public' hospital provision of these services rather than low service use (Table 22).

Use of cardiovascular medical services by age and sex

For both males and females, the incidence of cardiovascular Medicare and DVA services, except congenital cardiac surgery, tended to increase with age until age 75 years (Tables 23 \& 24). Incidence rates for congenital cardiac surgery were highest among $0-24$ year olds.
In most age groups and for all services except cerebrovascular operations and vascular ultrasound, incidence rates were higher among males than females. The difference in rates between males and females reduces slightly if only Medicare services are considered, however the differential remains. This is in contrast to the overall use of Medicare services which is higher for females than males (12.5 services per capita for females compared with 8.4 services per capita for males) (Australian Institute of Health and Welfare 1996a).

Table 22: Use of Medicare and Department of Veterans' Affairs cardiovascular services, 199495

Type of service	Medicare	Department of Veterans' Affairs	Total
		Number of services	
Diagnostic procedures and investigations			
Cardiovascular	1,425,304	115,103	1,540,407
Pacemaker testing	13,368	1,346	14,714
Vascular operations			
Arterial surgery	10,666	3,369	14,035
Transluminal balloon angioplasty	6,550	1,187	7,737
Transluminal stent insertion	1,008	188	1,196
Cardiothoracic operations			
Selective coronary arteriography	29,994	8,296	38,290
Permanent pacemaker insertion or replacement	3,858	952	4,810
Heart catheterisation and electrophysiological studies	2,521	317	2,838
Valvular procedures	1,674	293	1,967
Coronary artery bypass	7,819	1,390	9,209
Congenital cardiac surgery	915	0	915
Neurosurgical operations			
Cerebrovascular disease	440	28	468
Diagnostic imaging			
Cardiac ultrasound	192,638	14,396	207,034
Vascular ultrasound	186,279	17,491	203,770
Serial angiocardiography	28,932	3,219	32,151
Selective coronary arteriography	30,243	0	30,243
Other angiography and report	27,450	4,544	31,994
Cardiac nuclear imaging	11,334	3,431	14,765
Total	1,980,993	175,550	2,156,543

Note: These estimates do not include services for public patients in public hospitals.
Sources: Medicare Estimates and Statistics Section, Department of Health and Family Services; Statistics Section, Department of Veterans' Affairs.

Table 23: Age-specific incidence rates ${ }^{(a)}$ for cardiovascular Medicare and DVA services by type of service, males, 1994-95

Type of service	Age group (years)									
	0-24	25-34	35-44	45-54	55-59	60-64	65-69	70-74	75+	All ages
Diagnostic procedures and investigations										
Cardiovascular	746.7	2,632.2	6,124.7	12,869.5	20,857.5	27,732.7	34,508.2	41,350.5	38,995.2	9,241.7
Pacemaker testing	4.3	6.1	10.5	31.9	79.9	172.4	356.5	602.2	1,167.9	92.7
Vascular operations										
Arterial surgery	1.5	1.6	5.5	33.7	152.7	284.9	550.6	968.1	827.5	103.9
Transluminal balloon angioplasty	0.4	1.1	18.4	84.9	162.5	243.1	294.5	359.6	216.8	60.4
Transluminal stent insertion	(b)	(b)	2.6	13.3	29.1	43.2	50.5	53.4	30.7	9.7
Cardiothoracic operations										
Selective coronary arteriography	1.0	9.6	94.6	430.4	849.9	1,164.6	1,476.1	2,086.9	9417	306.9
Permanent pacemaker insertion or replacement	0.7	1.5	2.0	11.2	30.1	57.8	114.3	251.2	385.2	31.8
Heart catheterisation and electrophysiological studies	6.9	4.3	8.0	21.5	36.4	53.3	76.3	95.4	63.1	18.9
Valvular procedures	1.4	1.3	3.1	11.7	27.9	43.2	63.5	93.1	67.7	13.3
Coronary artery bypass	(b)	(b)	13.4	92.7	242.4	350.2	448.5	538.8	254.1	80.8
Congenital cardiac surgery	12.3	0.4	1.0	1.7	(b)	2.0	3.9	(b)	(b)	5.4
Neurosurgical therapeutic procedures										
Cerebrovascular disease	0.3	0.9	2.3	3.2	6.8	4.3	8.0	(b)	(b)	1.9
Diagnostic imaging										
Cardiac ultrasound	385.4	305.7	575.6	1,259.3	2,274.9	3,291.1	4,362.8	5,426.2	4,970.4	1,179.2
Vascular ultrasound	54.9	196.0	393.6	999.2	2,110.9	3,304.0	4,709.2	6,370.2	5,954.0	1,047.7
Serial angiocardiography	9.5	9.9	84.2	380.1	778.0	1,077.3	1,206.0	1,290.2	591.4	248.7
Selective coronary arteriography	0.5	9.9	96.0	425.0	848.9	1,115.9	1,132.1	825.6	397.4	233.7
Other angiography and report	14.2	21.0	48.8	162.7	436.2	728.5	1,130.0	1,538.5	1,243.1	218.8
Cardiac nuclear imaging	4.7	11.3	35.3	118.0	221.9	328.2	482.3	814.9	483.6	106.9
Total	1,244.7	3,213.3	7,519.4	16,949.9	29,146.9	39,996.9	50,973.1	62,670.0	56,591.7	13,002.6

(a) Incidence per 100,000 mid-1995 Australian population for each sex and age group.
(b) Rate not shown for confidentiality reasons.

Sources: AIHW derived from data provided by the Medicare Estimates and Statistics Section of the Department of Health and Family Services, and the Statistics Section of the Department of Veterans' Affairs.

Table 24: Age-specific incidence rates ${ }^{(a)}$ for cardiovascular Medicare and DVA services by type of service, females, 1994-95

Type of service	Age group (years)									
	0-24	25-34	35-44	45-54	55-59	60-64	65-69	70-74	75+	All ages
Diagnostic procedures and investigations										
Cardiovascular	776.8	2,491.0	5,071.3	10,001.5	15,728.7	20,494.2	25,283.7	29,319.8	28,068.2	7,833.1
Pacemaker testing	4.5	5.6	11.3	24.7	54.5	98.3	220.8	332.1	613.5	70.4
Vascular operations										
Arterial surgery	0.7	3.0	6.0	22.6	50.2	108.8	215.2	313.5	360.0	51.8
Transluminal balloon angioplasty	(b)	(b)	3.6	16.8	49.5	71.6	115.9	161.1	126.2	25.5
Transluminal stent insertion	0.0	0.0	0.7	3.4	7.3	12.2	19.4	16.8	14.5	3.5
Cardiothoracic operations										
Selective coronary arteriography	0.3	2.5	25.0	136.4	299.6	456.7	625.3	673.2	302.4	118.1
Permanent pacemaker insertion or replacement	1.1	1.7	1.9	6.1	12.1	28.7	59.9	106.1	203.3	21.6
Heart catheterisation and electrophysiological studies	5.7	6.1	10.3	15.5	26.3	23.9	31.5	32.9	27.4	12.5
Valvular procedures	0.9	0.6	2.3	7.9	14.1	23.3	30.9	55.9	35.2	8.5
Coronary artery bypass	(b)	(b)	0.9	10.7	35.1	86.9	124.9	159.5	76.9	21.5
Congenital cardiac surgery	10.8	1.0	0.7	1.4	2.3	2.6	2.8	3.4	1.1	4.8
Neurosurgical therapeutic procedures										
Cerebrovascular disease	0.4	2.0	2.5	8.4	7.6	6.8	9.8	5.9	3.3	3.2
Diagnostic imaging										
Cardiac ultrasound	377.6	501.1	667.7	1,129.8	1,875.1	2,589.5	3,3219.0	4,061.4	3,492.1	1,115.2
Vascular ultrasound	83.4	464.3	803.1	1,483.5	2,230.6	2,975.8	4,007.9	4,859.9	4,417.8	1,209.6
Serial angiocardiography	6.5	2.6	25.4	135.2	304.7	438.5	553.3	546.2	229.9	108.1
Selective coronary arteriography	0.4	2.5	25.1	132.8	293.3	442.5	522.9	488.8	228.1	101.9
Other angiography and report	12.7	24.6	49.9	110.4	224.2	338.6	477.3	709.8	668.9	136.0
Cardiac nuclear imaging	3.1	10.3	29.6	65.7	119.2	160.5	245.6	293.6	172.5	56.9
Total	1,285.3	3,519.5	6,737.1	13,312.7	21,334.4	28,359.3	35,8661	42,139.8	39,041.3	10,902.3

[^8]Sources: AIHW derived from data provided by the Medicare Estimates and Statistics Section of the Department of Health and Family Services, and the Statistics Section of the Department of Veterans' Affairs.

Use of cardiovascular medical services by State and Territory

There was a great deal of variation in the use of cardiovascular Medicare and DVA services by the States and Territories in 1994-95. Overall, New South Wales had the highest incidence with an age-standardised rate of 14,596 cardiovascular services per 100,000 population, while the Northern Territory had the lowest incidence (4,160 cardiovascular services per 100,000 population) (Table 25).
However, for specific cardiovascular services, the highest use of services did not always occur in New South Wales nor did the lowest always occur in the Northern Territory. In 1994-95, New South Wales had the highest age-standardised incidence rates of cardiovascular diagnostic procedures, transluminal stent insertion, heart catheterisation and electrophysiological studies, congenital cardiac surgery and most cardiovascular diagnostic imaging procedures (Table 25). The highest incidence of pacemaker testing occurred in Victoria, where the age-standardised rate was 2 times the national average. Victoria also had the highest rate of permanent pacemaker insertion or replacement. Transluminal balloon angioplasty was most frequently undertaken in Western Australia where the rate of use was almost 1.5 times the national average. The age-standardised incidence rate of selective coronary arteriography was also highest in Western Australia. The incidence of coronary artery bypass was highest in South Australia but New South Wales and Queensland also had rates that were higher than the national average. Use of cardiac nuclear imaging services in the Australian Capital Territory and New South Wales were 1.9 and 1.8 times higher than the Australian average, respectively.
While age-standardised rates have been compared to adjust for differences in age structures between States and Territories, there are other factors that may affect the differences observed. For example, State and Territory differences may reflect different mixes of public and private patients in hospital and different types of service provision. The lower use of most cardiovascular services in the Northern Territory may also be because a number of services provided to Aboriginal and Torres Strait Islander people are provided through programs other than Medicare and therefore are not included here (Australian Institute of Health and Welfare 1996a).

Table 25: Age-standardised incidence rates ${ }^{\left({ }^{(}\right)}$for cardiovascular Medicare and DVA services by type of service and State and Territory, 1994-95

Trends in the use of cardiovascular medical services

Between 1992-93 and 1994-95, the use of most cardiovascular Medicare and DVA services increased or remained steady. This was true for both males and females (Tables 26 \& 27).
Those services with the greatest increases were transluminal stent insertion and serial angiocardiography. Use of serial angiocardiography also grew rapidly between 1992-93 and 1993-94 but the rate of growth slowed considerably in the following financial year.

Transluminal stent insertion was included on the Medicare Benefits Schedule from 1 April 1992. Over the period from 1992-93 to 1994-95, use of transluminal stent insertion increased by an average of 110% per year, with the rate of growth between 1993-94 and 1994-95 being more than double that between 1992-93 and 1993-94.
The incidence of cardiac nuclear imaging services fell over the period 1992-93 to 1994-95, from 146 to 109 services per 100,000 population for males and from 82 to 53 services per 100,000 population for females. Use of arterial surgery also fell between 1992-93 and 1994-95.
Care should be exercised in interpreting the trends however, as changes in use of medical services over time can be influenced by many factors. These include changes in the Medicare Benefits Schedule; changes in the coverage of Medicare as a result of Government policy; changes in the mix of services provided in public and private hospitals; population growth and net migration; ageing of the population; the proportion of the population with private health insurance; and cost shifting (i.e. services previously provided free of charge by States and Territories, that are now only available under Medicare) (Commonwealth Department of Health and Family Services 1996a).

Table 26: Age-standardised incidence rates ${ }^{(a)}$ and standard errors for cardiovascular Medicare and DVA services by type of service, males, 1992-93 to 1994-95

Type of service	Year					
	1992-93		1993-94		1994-95	
	Rate	Standard error	Rate	Standard error	Rate	Standard error
Diagnostic procedures and investigations						
Cardiovascular	9,023.2	9.0	9,197.4	8.9	9,389.7	8.9
Pacemaker testing	(b)	(b)	74.9	1.0	102.5	1.1
Vascular operations						
Arterial surgery	117.4	1.2	117.3	1.2	110.1	1.1
Transluminal balloon angioplasty	32.8	0.6	55.9	0.8	61.1	0.8
Transluminal stent insertion	2.1	0.2	3.7	0.2	9.8	0.3
Cardiothoracic operations						
Selective coronary arteriography	251.2	1.7	288.5	1.8	308.5	1.9
Permanent pacemaker insertion or replacement	15.9	0.5	31.0	0.6	34.9	0.7
Heart catheterisation and electrophysiological studies	19.2	0.5	20.2	0.5	19.2	0.5
Valvular procedures	7.1	0.3	13.9	0.4	13.7	0.4
Coronary artery bypass	39.8	0.7	80.0	1.0	81.8	1.0
Congenital cardiac surgery	3.3	0.2	5.2	0.2	5.4	0.3
Neurosurgical operations						
Cerebrovascular disease	2.1	0.2	1.8	0.1	1.9	0.1
Diagnostic imaging						
Cardiac ultrasound	858.9	3.2	1,063.6	3.5	1,204.8	3.7
Vascular ultrasound	655.1	2.8	873.4	3.2	1,083.7	3.5
Serial angiocardiography	69.9	0.9	220.3	1.6	248.8	1.7
Selective coronary arteriography	202.5	1.5	222.9	1.6	231.8	1.6
Other angiography and report	332.9	2.0	210.2	1.6	227.1	1.6
Cardiac nuclear imaging	146.1	1.3	120.0	1.2	109.0	1.1
Total	11,804.4	9.7	12,600.1	9.7	13,243.8	9.6

(a) Rate per 100,000 population age-standardised to the mid-1991 total Australian population.
(b) Rate not presented because data are available for part of the year only.

Sources: AIHW derived from data provided by the Medicare Estimates and Statistics Section of the Department of Health and Family Services, and the Statistics Section of the Department of Veterans' Affairs.

Table 27: Age-standardised incidence rates ${ }^{(a)}$ and standard errors for cardiovascular Medicare and DVA services by type of service, females, 1992-93 to 1994-95

Type of service	Year					
	1992-93		1993-94		1994-95	
	Rate	Standard error	Rate	Standard error	Rate	Standard error
Diagnostic procedures and investigations						
Cardiovascular	6,894.4	7.8	7,034.6	7.8	7,215.4	7.8
Pacemaker testing	14.5	0.4	44.1	0.7	58.6	0.7
Vascular operations						
Arterial surgery	47.8	0.7	45.3	0.7	44.8	0.7
Transluminal balloon angioplasty	14.2	0.4	21.3	0.5	22.7	0.5
Transluminal stent insertion	0.9	0.1	1.2	0.1	3.2	0.2
Cardiothoracic operations						
Selective coronary arteriography	91.2	1.0	104.8	1.1	110.1	1.1
Permanent pacemaker insertion or replacement	8.6	0.3	15.3	0.4	17.7	0.4
Heart catheterisation and electrophysiological studies	10.9	0.4	12.5	0.4	12.0	0.4
Valvular procedures	3.9	0.2	8.0	0.3	7.7	0.3
Coronary artery bypass	8.3	0.3	19.4	0.5	19.8	0.5
Congenital cardiac surgery	2.3	0.2	5.3	0.3	5.0	0.2
Neurosurgical operations						
Cerebrovascular disease	3.1	0.2	2.6	0.2	3.1	0.2
Diagnostic imaging						
Cardiac ultrasound	775.3	2.9	939.5	3.1	1,048.3	3.3
Vascular ultrasound	669.5	2.7	875.2	3.0	1,112.6	3.3
Serial angiocardiography	27.1	0.6	92.3	1.0	101.8	1.0
Selective coronary arteriography	81.6	0.9	92.2	1.0	95.9	1.0
Other angiography and report	215.9	1.5	118.7	1.1	122.2	1.1
Cardiac nuclear imaging	81.6	0.9	60.9	0.8	52.8	0.7
Total	8,951.1	8.7	9,493.3	8.8	10,053.9	8.9

[^9]Sources: AIHW derived from data provided by the Medicare Estimates and Statistics Section of the Department of Health and Family Services, and the Statistics Section of the Department of Veterans' Affairs.

Benefits paid for cardiovascular medical services in 1994-95

In 1994-95, the Health Insurance Commission paid $\$ 5,697$ million in Medicare benefits for claims processed in that year (Health Insurance Commission 1995). DVA medical benefits for the same year totalled $\$ 695.0$ million (Statistics Section, Department of Veterans' Affairs, personal communication). Benefits paid for cardiovascular Medicare and DVA services in 1994-95 totalled $\$ 202$ million, accounting for 3\% of total benefits paid (Table 28).
In line with service use, the cardiovascular Medicare and DVA services for which the highest benefits were paid in 1994-95 were cardiovascular diagnostic procedures and investigations ($\$ 54.1$ million), cardiac ultrasound ($\$ 42.8$ million) and vascular ultrasound (\$31.8 million) (Table 28).

Table 28: Benefits paid (\$) for cardiovascular Medicare and DVA services by type of service, 1994-95

Type of service		Department of Veterans' Affairs	Total
Diagnostic procedures and investigations			
Cardiovascular			Medicare

Sources: Medicare Estimates and Statistics Section, Department of Health and Family Services; Statistics Section, Department of Veterans' Affairs.

Trends in benefits paid for cardiovascular medical services

In general, trends in benefits paid between 1992-93 and 1994-95 were consistent with trends in the services (Table 29). One exception was arterial surgery, where benefits paid increased by an average of almost 5% per year over the 3-year period, but incidence fell by an average of 3.6% per year.

Table 29: Benefits paid (\$) for cardiovascular Medicare and DVA services by type of service, 1992-93 to 1994-95 (1994-95 prices ${ }^{(\mathrm{a})}$)

	Year		
Type of service	$\mathbf{1 9 9 2 - 9 3}$	$\mathbf{1 9 9 3 - 9 4}$	$\mathbf{1 9 9 4 - 9 5}$
Diagnostic procedures and investigations			
Cardiovascular	$47,955,420$	$51,089,064$	$54,064,927$
Pacemaker testing	113,347	335,484	484,079
Vascular operations			
Arterial surgery	$6,693,652$	$6,827,406$	$7,337,727$
Transluminal balloon angioplasty	$1,018,178$	$1,581,667$	$1,760,399$
Transluminal stent insertion	94,773	161,677	463,753
Cardiothoracic operations			
Selective coronary arteriography	$12,242,600$	$14,260,172$	$15,288,183$
Permanent pacemaker insertion or replacement	260,901	952,975	$1,191,961$
Heart catheterisation and electrophysiological			
studies	$1,133,746$	$1,298,421$	$1,287,934$
Valvular procedures	770,190	$1,619,584$	$1,635,272$
Coronary artery bypass	$5,195,765$	$10,941,304$	$11,372,963$
Congenital cardiac surgery	357,864	652,036	629,930
Neurosurgical operations			
Cerebrovascular disease	682,008	586,181	651,351
Diagnostic imaging			
Cardiac ultrasound	$25,268,234$	$36,404,295$	$42,764,007$
Vascular ultrasound	$19,124,527$	$25,266,737$	$31,816,450$
Serial angiocardiography	762,879	$2,543,613$	$2,917,165$
Selective coronary arteriography	$5,908,465$	$6,661,476$	$7,041,767$
Other angiography and report	$9,364,364$	$13,826,391$	$15,651,117$
Cardiac nuclear imaging	$7,855,327$	$5,985,125$	$5,366,461$
Total	$\mathbf{1 4 4 , 8 0 2 , 2 4 1}$	$\mathbf{1 8 0 , 9 9 3}$	

(a) The 'Doctor' price index from the Private Final Consumption Expenditure (PFCE) deflators produced by the Australian Bureau of Statistics was used to adjust figures to 1994-95 prices.
Sources: AIHW derived from data provided by the Medicare Estimates and Statistics Section of the Department of Health and Family Services, and the Statistics Section of the Department of Veterans' Affairs.

Estimates from the Australian Bureau of Statistics' National Health Survey 1995

Hospital use in the two weeks prior to interview for a recent cardiovascular condition

Hospital use in the two weeks prior to interview for a recent cardiovascular condition by age

Age-specific estimates were too small to report.

Hospital use in the two weeks prior to interview for a recent cardiovascular condition by sex

After adjusting for age, of those males reporting a recent cardiovascular condition, 8.0% also reported being hospitalised for the condition in the two weeks prior to interview, a rate much greater than that reported by females (1.0%). Males (8.4%) were more likely than females (0.3%) to report being hospitalised for heart disease in the two weeks prior to interview (Table 30).

Table 30: Percentage ${ }^{(a)}$ of people reporting a recent cardiovascular condition being hospitalised in the last two weeks by sex, 1995

Type of condition	Males	Females
Heart disease	Per cent (SE)	
Other diseases of the circulatory system ${ }^{(b)}$	$8.4(2.2)$	$0.3(0.1)$
III-defined signs and symptoms of heart	$3.3(0.9)$	$3.7(1.0)$
conditions	$1.8(0.7)$	$1.3(0.5)$
All cardiovascular (\mathbf{c})	$\mathbf{8 . 0 (1 . 5)}$	$\mathbf{1 . 0}(\mathbf{0 . 2})$

(a) Age-standardised to the mid-1991 total Australian population.
(b) Does not include atherosclerosis, cerebrovascular disease or after-effects of stroke.
(c) Includes atherosclerosis, cerebrovascular disease or after-effects of stroke.

SE: Standard error
Source: AIHW derived from the ABS National Health Survey 1995.
Of those reporting a recent cardiovascular condition, 3.4% of males and 2.7% of females reported visiting casualty/emergency/outpatients or a day clinic for the condition (Table 31).

Table 31: Percentage ${ }^{(a)}$ of people reporting a recent cardiovascular condition visiting casualty/emergency/outpatients or a day clinic by sex, 1995

Action taken	Males	Females
	Per cent (SE)	
Visited casualty/emergency/outpatients/day clinic	$3.4(0.4)$	$2.7(0.4)$

[^10]Source: AIHW derived from the ABS National Health Survey 1995.

Hospital use in the two weeks prior to interview for a recent cardiovascular condition by State and Territory

After adjusting for age, estimates by State or Territory were too small to report.

National Heart Foundation cardiac surgery register

In 1993, a total of 18,936 heart operations were performed in Australia (National Heart Foundation of Australia 1996a). Over 90% of all heart operations performed in 1993 were for acquired heart disease. Mortality associated with heart surgery (i.e. death within 30 days of the operation or during the post-operative period in hospital) in 1993 was 2.6% for closed operations and 2.5% for open operations.
Only 6% of open heart operations performed in 1993 were for congenital heart conditions (National Heart Foundation of Australia 1996a). In contrast, over 80% of all closed heart operations undertaken in that year were for congenital heart defects. Most congenital heart surgery performed between 1989 and 1993 was for ventricular and atrial septal defects.
Since the mid-1950s the rate of open heart surgery in Australia has increased by an average of 19% per year, from 1.9 operations per million population in 1957 to 1042.0 operations per million population in 1993. Over the same period, mortality from open heart surgery has fallen by an average of 6.5% per year.

Between 1953 and 1960, closed heart surgery rates increased by an annual average of 11% (Figure 10). However since 1960, the rate of closed heart surgery in Australia has fallen. Mortality rates from closed heart surgery have varied from year to year with no real trend apparent.

The first coronary artery bypass operations in Australia were performed in 1970 (National Heart Foundation of Australia 1996a). Since that time, the number of coronary bypass graft operations has increased markedly from 50 operations to 14,638 operations in 1993 (Figure 11). Mortality associated with coronary artery bypass graft operations is currently around 2%. About 8% of coronary artery bypass graft operations were re-operations, with an associated mortality rate of 5.3%.
Ten per cent of coronary artery bypass operations performed in 1993 were undertaken with concomitant procedures such as valve surgery, excision of infarct or aneurysm, or surgery for ventricular septal defects (National Heart Foundation of Australia 1996a).

Figure 11: Coronary artery bypass graft operations, 1970-1993
In 1993 there were 3,552 operations for heart valve defects, most of them in aortic (58%) and mitral (38%) valves. The majority of these procedures (81%) entailed replacing the damaged valves, most commonly with artificial prostheses (74%). About 4% of valve interventions were re-operations for valve failures.

National Heart Foundation coronary angioplasty register

Coronary angioplasty was first performed in Australia in 1980 (National Heart Foundation 1996b). Since that time the number of angioplasty procedures performed each year has increased rapidly (Figure 12).
In 1994, there were 9,732 coronary angioplasty procedures performed in Australia (National Heart Foundation 1996b). Most of these procedures were single vessel procedures (92%). Procedures involving two vessels accounted for 7.5% of angioplasty procedures, while procedures on more than two vessels accounted for only 0.5% of all angioplasty in 1994. On average, 1.14 lesions were attempted per procedure.

Information about repeat procedures was available for 9,431 of the angioplasties performed in 1994 (National Heart Foundation 1996b). One fifth of these procedures were repeat procedures. More than half of the repeat procedures (57%) were for patients who had undergone previous angioplasty in 1994. Among units where the information was available, 75% of repeat procedures where the previous angioplasty was in 1994 were to the same lesion. Where the previous angioplasty was performed before 1994, 52% of repeat procedures were to the same lesion.

Figure 12: Number of angioplasty procedures, 1980-1994

In 1994, information about the indication for angioplasty was available for 8,472 procedures (National Heart Foundation 1996b). For 52\% of angioplasty procedures in that year the indication was stable angina pectoris. Unstable angina and acute myocardial infarction accounted for another 40% and 7% of procedures, respectively. The remaining angioplasties were performed for prognostic and other reasons.
Information about the use of thrombolytic therapy before angioplasty was available for 7,173 procedures in 1994 (National Heart Foundation 1996b). In approximately 7\% of angioplasties, thrombolytic therapy was administered prior to the procedure.
Stents were used in 9\% of angioplasty procedures in 1994 (National Heart Foundation 1996b).
The National Heart Foundation coronary angioplasty register collects information about complications following the procedure that occur during the same hospital admission. Of the angioplasty procedures performed in 1994, 185 patients required coronary artery bypass graft surgery for angioplasty failure or complications during the same hospital admission (National Heart Foundation 1996b). This represents a rate of 1.9 coronary artery bypass grafts per 100 angioplasty procedures. The rate of coronary artery bypass grafting following angioplasty has fallen markedly since the early 1980s.
The rate of patients suffering acute myocardial infarction following angioplasty has also tended to fall since the early 1980s. Among the units for which data on acute myocardial
infarction following angioplasty were available in 1994, the rate of complication was 1.4 per 100 procedures (National Heart Foundation 1996b).
Deaths during the same hospital admission in which angioplasty was performed occurred at a rate of 0.45 per 100 procedures in 1994 (National Heart Foundation 1996b).

Australian casemix data

The term 'casemix' refers to the numbers of each diagnostic category a hospital treats and to the mix of treatments and procedures provided to patients (Australian Institute of Health and Welfare 1996a). It enables the use of resources in treating patients to be related to the number of patients treated and their diagnosis.

The most common casemix classifications used for describing admitted hospital patients are Diagnosis Related Groups (DRGs) (Australian Institute of Health and Welfare 1996a). These use information such as the patient's age, sex, diagnosis, comorbidities and procedures to group patient episodes of similar clinical condition and resource use.
The Commonwealth Department of Health and Family Services publishes the Australian Casemix Report annually. The report provides national information on public and private acute hospital activity for each financial year (Commonwealth Department of Health and Family Services 1997b). This hospital activity is measured by Australian National Diagnosis Related Groups (AN-DRGs).

Hospital separations for cardiovascular disease

In 1995-96, there were 3.6 million separations from public acute hospitals (Australian Institute of Health and Welfare 1997a). This represents a rate of 198.1 separations per 1,000 population. The average length of stay in public acute hospitals was 4.8 days in 1995-96.
For private acute and free-standing day facilities, there were 1.6 million separations in 1995-96, representing a rate of 87.7 separations per 1,000 population (Australian Institute of Health and Welfare 1997a). The average length of stay was 3.7 days.
Version 3.0 of the AN-DRG classification was released in July 1995 (Commonwealth Department of Health and Family Services 1996b). Only information about the most common AN-DRGs for cardiovascular disease is presented here. Detailed information can be found in the report by the Commonwealth Department of Health and Family Services (Commonwealth Department of Health and Family Services 1997b) and in Australian Hospital Statistics 1995-96 (Australian Institute of Health and Welfare 1997a).
In terms of public acute hospital separations in 1995-96, 'heart failure \& shock' (AN-DRG 252) was the leading cardiovascular AN-DRG with 32,700 separations (Table 32). Overall, it accounted for 1% of all public acute hospital separations and was ranked 10th highest for public acute hospital separations in that year (Australian Institute of Health and Welfare 1997a). The most common principal diagnoses for 'heart failure \& shock' were congestive heart failure (ICD-9-CM 428.0) and left heart failure (ICD-9-CM 428.1). Just over half (50.4%) of all separations for 'heart failure \& shock' were for females, and 95% of separations were for persons aged 55 years and over.
'Chest pain' (AN-DRG 261) was the second leading cardiovascular AN-DRG for public acute hospital separations in 1995-96 (Table 32). It ranked 18th highest among all AN-DRGs for public acute hospitals (Australian Institute of Health and Welfare 1997a).
Six of the top 10 cardiovascular AN-DRGs for public acute hospital separations were also among the top 10 for private acute hospital separations in 1995-96 (Table 32). However, the ranking of cardiovascular AN-DRGs differed between the public and private hospitals.

Table 32: The 10 cardiovascular AN-DRGs (V3.0) that account for the highest number of hospital separations by type of hospital, Australia, 1995-96

Hospital type / AN-DRG	Description	Number of separations	\% of total separations for hospital type	Average length of stay (days)
Public acute				
252	Heart Failure \& Shock	32,700	0.9	9.0
261	Chest Pain	28,088	0.8	2.2
274	Circ Dsr W/O AMI W Invas Card Inves Proc W/O Comp Dx \& W/O Maj C	21,252	0.6	1.8
270	Unstable Angina W/O CC	19,432	0.5	3.8
249	Circ Disorders W AMI W/O Invasive Cardiac Inves Proc W/O Major CC	17,521	0.5	6.7
037	Cerebrovascular Disorders Except TIA W CC	13,378	0.4	17.6
256	Coronary Atherosclerosis W/O CC	13,314	0.4	3.5
280	Non-Major Arrhythmia \& Conduction Disorders Age>69 or W N-Maj CC	12,564	0.3	4.1
269	Unstable Angina W CC	12,074	0.3	5.5
038	Cerebrovascular Disorders Except TIA W/O CC	11,804	0.3	12.6
Private acute				
274	Circ Dsr W/O AMI W Invas Card Inves Proc W/O Comp Dx \& W/O Maj C	15,925	1.0	1.7
239	Vein Ligation \& Stripping	9,941	0.6	2.4
252	Heart Failure \& Shock	6,594	0.4	11.8
297	Trans-Vascular Percutaneous Cardiac Intervention	5,135	0.3	3.6
261	Chest Pain	4,475	0.3	2.4
291	Coronary Bypass W/O Invasive Cardiac Inves Proc W/O Major CC	3,576	0.2	10.0
273	Circ Dsr W/O AMI W Invas Card Inves Proc W Comp Dx or W Maj CC	3,136	0.2	3.2
280	Non-Major Arrhythmia \& Conduction Disorders Age>69 or W N-Maj CC	2,817	0.2	5.0
256	Coronary Atherosclerosis W/O CC	2,742	0.2	7.3
038	Cerebrovascular Disorders Except TIA W/O CC	2,414	0.2	18.8

Notes: AM1—Acute Myocardial Infarction

> Card-Cardiac
> CC-Complications and Comorbidities
> Circ-Circulatory
> Comp-Complicated
> Dsr—Disorder
> Dx—Diagnosis
> Invas—Invasive
> Inves—Investigation
> N-No
> Proc-Procedure
> TIA—Transient Ischaemic Attack
> W—With
> W/O—Without

Source: Australian Institute of Health and Welfare 1997a.

Hospital length of stay for cardiovascular disease

‘Heart failure and shock' was the leading cardiovascular AN-DRG for public acute hospital patient days in 1995-96 (Table 33). Further, it ranked eighth highest among all AN-DRGs for overall public hospital patient days in that year (Australian Institute of Health and Welfare 1997a).
Other cardiovascular AN-DRGs that featured among the top 20 AN-DRGs for public hospital patient days in 1995-96 were 'cerebrovascular disorders except transient ischaemic attack with complications and comorbidities' (AN-DRG 037), 'circulatory disorders with acute myocardial infarction without invasive cardiac investigation procedure without major complications and comorbidities' (AN-DRG 249), and 'cerebrovascular disorders except transient ischaemic attack without complications and comorbidities' (AN-DRG 038) (Table 33).
For AN-DRG 037 (see above), the most common principal diagnosis in 1995-96 was cerebrovascular accident (ICD-9-CM 436) which accounted for 35.6% of public hospital separations for this group (Commonwealth Department of Health and Family Services 1997b). Just over 51% of public hospital episodes for AN-DRG 037 were for females, and 95% of episodes were for persons aged 50 years and over.
Cerebrovascular accident (ICD-9-CM 436) was the most common principal diagnosis for public hospital episodes of AN-DRG 038 in 1995-96 (Commonwealth Department of Health and Family Services 1997b). Slightly more than half (51.4%) of public hospital separations for AN-DRG 038 were for males, and 86% were for persons aged 50 years and over.

In 1995-96, acute myocardial infarction was the most common principal diagnosis for public acute hospital episodes of AN-DRG 249 (Commonwealth Department of Health and Family Services 1997b). Almost two thirds of public hospital separations for AN-DRG 249 in 1995-96 were for males, and almost 90\% were for persons aged 50 years and over.
Only five of the top 10 cardiovascular AN-DRGs for public hospital patient days were among the top 10 for private hospital patient days. 'Heart failure and shock' was the leading cardiovascular AN-DRG for private acute hospital patient days in 1995-96 (Table 33). Further, it ranked 10th highest among all AN-DRGs for private hospital patient days in that year (Australian Institute of Health and Welfare 1997a).
The leading cardiovascular AN-DRGs for average length of stay in 1995-96 were very different from those for separations and patient days (Table 34). 'Cardiothoracic/vascular procedures for neonates' (AN-DRG 704) ranked first for length of stay in public hospitals. 'Amputation for circulatory system except upper limb \& toe' (AN-DRG 233) had the highest length of stay in private acute hospitals. Seven of the 10 cardiovascular AN-DRGs with the highest average length of stay in public acute hospitals were also among the top 10 for private acute hospitals.

Table 33: The 10 cardiovascular AN-DRGs (V3.0) that account for the highest number of hospital patient days by type of hospital, Australia, 1995-96

Hospital type / ANDRG	Description	Number of patient days	\% of total patient days for hospital type	Average length of stay (days)
Public acute				
252	Heart Failure \& Shock	294,074	1.7	9.0
037	Cerebrovascular Disorders Except TIA W CC	235,796	1.4	17.6
038	Cerebrovascular Disorders Except TIA W/O CC	149,249	0.9	12.6
249	Circ Disorders W AMI W/O Invasive Cardiac Inves Proc W/O Major CC	117,567	0.7	6.7
270	Unstable Angina W/O CC	73,372	0.4	3.8
269	Unstable Angina W CC	65,983	0.4	5.5
261	Chest Pain	61,548	0.4	2.2
291	Coronary Bypass W/O Invasive Cardiac Inves Proc W/O Major CC	59,334	0.3	8.8
280	Non-Major Arrhythmia \& Conduction Disorders Age>69 or W N-Maj CC	51,175	0.3	4.1
255	Coronary Atherosclerosis W CC	48,814	0.3	6.6
Private acute				
252	Heart Failure \& Shock	77,806	1.3	11.8
038	Cerebrovascular Disorders Except TIA W/O CC	45,294	0.8	18.8
037	Cerebrovascular Disorders Except TIA W CC	43,438	0.7	18.3
291	Coronary Bypass W/O Invasive Cardiac Inves Proc W/O Major CC	35,936	0.6	10.0
274	Circ Dsr W/O AMI W Invas Card Inves Proc W/O Comp Dx \& W/O Maj C	26,314	0.4	1.7
239	Vein Ligation \& Stripping	24,101	0.4	2.4
256	Coronary Atherosclerosis W/O CC	19,987	0.3	7.3
297	Trans-Vascular Percutaneous Cardiac Intervention	18,495	0.3	3.6
288	Coronary Bypass W Invasive Card Inves Proc Age>64 or W N-Maj CC	17,155	0.3	14.1
255	Coronary Atherosclerosis W CC	15,077	0.3	9.0

Notes: AMI—Acute myocardial infarction

```
Card-Cardiac
CC-complications and comorbidities
Circ-Circulatory
Comp-Complicated
Dsr-Disorder
Dx—Diagnosis
Invas-Invasive
Inves-investigation
Proc-procedure
TIA—Transient Ischaemic Attack
    W-With
    W/O-Without
```

[^11]Table 34: The 10 cardiovascular AN-DRGs (V3.0) with the highest average length of stay by type of hospital, Australia, 1995-96

Hospital type / AN-DRG	Description	Number of separations	Average length of stay (days)
Public acute			
704	Cardiothoracic/Vascular Procedures for Neonates	284	38.0
233	Amputation for Circ System Except Upper Limb \& Toe	1,425	27.3
228	Major Reconstruct Vascular Proc W/O Pump W Major CC	1,302	22.8
221	Cardiac Valve Proc W Pump W Invasive Cardiac Inves Proc W CC	250	19.9
008	Heart Transplant	99	19.3
287	Coronary Bypass W Invasive Card Inves Proc W Major CC	483	18.4
251	Infective Endocarditis	615	17.8
037	Cerebrovascular Disorders Except TIA W CC	13,378	17.6
160	Major Chest Procedures W Major CC	524	17.4
234	Upper Limb \& Toe Amputation for Circ System Disorders	682	16.2
Private acute			
233	Amputation for Circ System Except Upper Limb \& Toe	260	31.3
228	Major Reconstruct Vascular Proc W/O Pump W Major CC	430	20.7
251	Infective Endocarditis	88	19.3
038	Cerebrovascular Disorders Except TIA W/O CC	2,414	18.8
275	Skin Ulcers for Circulatory Disorders	249	18.5
037	Cerebrovascular Disorders Except TIA W CC	2,374	18.3
221	Cardiac Valve Proc W Pump W Invasive Cardiac Inves Proc W CC	220	17.6
287	Coronary Bypass W Invasive Card Inves Proc W Major CC	350	17.1
257	Hypertension W CC	416	16.4
234	Upper Limb \& Toe Amputation for Circ System Disorders	188	15.5

Notes: Card—Cardiac
CC-complications and comorbidities
Circ-Circulatory
Comp-Complicated
Dx—Diagnosis
Invas-Invasive
Inves-investigation
Proc-procedure
TIA-Transient Ischaemic Attack
W-With
W/O-Without
Source: Australian Institute of Health and Welfare 1997a.

Waiting times for elective surgery in Australian public hospitals

The Australian Institute of Health and Welfare has conducted two surveys on elective surgery waiting times, one in 1994 and the other in 1995 (Mays 1995; Moon 1996). These surveys aimed to collect nationally consistent information about elective surgery waiting times in as many public acute hospitals in Australia as possible. The surveys did not collect information about waiting lists or waiting times in private hospitals or for medical or emergency treatment. The results of the 1995 survey are published in the report Waiting for Elective Surgery in Australian Public Hospitals, 1995 (Moon 1996).
Throughput data for 1995 indicate that overall there were more additions to waiting lists during the survey period than total deletions (total deletions includes admissions for the awaited procedure plus removals for admissions other than admission). This was also true for the specialities of cardiothoracic surgery and vascular surgery.
Thirty per cent of all patients admitted during the survey period were classified as Category 1 patients. The proportions of patients admitted for cardiothoracic surgery, neurosurgery and vascular surgery who were classified as Category 1 patients were $46 \%, 44 \%$ and 44% respectively. For coronary artery bypass graft surgery, 53% of patients admitted were classified as Category 1.
At the census date, 94% of all patients on waiting lists were classified as Category 2 and the remaining 6% as Category 1 . Just over 1% of all patients were waiting for cardiothoracic surgery, 2% were waiting for vascular surgery, and another 1% were waiting for neurosurgery. Patients in these 3 speciality groups were more likely to be Category 1 patients compared with the other groups. Eighteen per cent of cardiothoracic patients were classified as Category 1, while 10% of patients in each of the neurosurgery and vascular surgery groups were classified as Category 1 . Under 1% of all patients were waiting for coronary artery bypass surgery, and 17% of these were classified as Category 1 patients.
The estimated clearance time for the total waiting lists was 2.7 months. The clearance times for cardiothoracic surgery, coronary artery bypass grafting, and neurosurgery were lower than the aggregate clearance time (1.1 months, 1.4 months and 1.3 months respectively). For patients in the vascular surgery group the estimated clearance time was 2.5 months.
When split by urgency classification the estimated clearance times were:

- All patients - 0.6 months for Category 1 and 3.5 months for Category 2;
- Cardiothoracic surgery -0.5 months for Category 1 and 1.5 months for Category 2;
- Neurosurgery - 0.4 months for Category 1 and 1.9 months for Category 2;
- Vascular surgery -0.5 months for Category 1 and 3.9 months for Category 2; and
- Coronary artery bypass graft-0.6 months for Category 1 and 2.2 months for Category 2.

Admission data indicate that 10.5% of Category 1 patients waited more than 30 days before admission for elective surgery in 1995, and 3.8% of Category 2 patients waited more than 12 months before admission. For cardiothoracic patients, 10.7% of Category 1 patients and 1.0% of Category 2 patients had an extended wait (i.e. Category 1 waited for over 30 days; and Category 2 waited for over 12 months). The corresponding proportions for neurosurgery were 5.5% (Category 1) and 0.6% (Category 2); for vascular surgery were 9.2% (Category 1) and 3.7% (Category 2); and for coronary artery bypass grafting were 13.3% (Category 1) and 1.3\% (Category 2).

Box 11: Waiting times explanatory notes

The results presented in this section are a summary of results from Waiting for elective surgery in Australian public hospitals, 1995 (Moon 1996). The information is based on data from all States and Territories except Queensland. Information is available by State and Territory, and by type of hospital (i.e. teaching and non-teaching). However, only national estimates (excluding Queensland) are presented here because of the differences between States and Territories that may affect estimates. These differences are discussed in detail by Moon (1996).
The 1995 survey included data collected by the State and Territory health authorities. Two types of information were collected:

- information about patients added to and removed from waiting lists during the survey period and, for patients admitted, the lengths of time prior to admission (throughput data); and
- information about 'ready for care' patients (i.e. patients who are prepared to accept an offer of a hospital admission or to begin the process leading directly to admission) waiting to be admitted for elective surgery on the census date (census data).
All States and Territories, except South Australia and Queensland, provided data relating to the period 1 January 1995 to 30 June 1995. For South Australia the survey period was 1 February 1995 to 31 July 1995. Data for Queensland covered the period 1 October to 30 November 1995; however, due to the difference in survey period Queensland data are not comparable with those obtained from the other States and Territories. For all States and Territories, the census date fell on the last day of the survey period.

The 1995 survey collected throughput and census data for 11 surgical specialties - cardiothoracic; ear, nose and throat; general; gynaecology; neurosurgery; ophthalmology; orthopaedic; plastic/reconstructive; urology; vascular; and other (refers to data about elective surgery patients who were not classified into one of 10 categories). In addition, data are collected for 15 indicator procedures, one of which is coronary artery bypass graft.
There are two urgency categories:

- Category 1 - admission desirable within 30 days; and
- Category 2 -admission desirable within 31 days and over (there is no time limit placed on Category 2 patients).

Clearance time is the theoretical length of time that it would take to clear the waiting list of all patients waiting at a point in time if the rate of clearance remained constant and patients could be treated at any hospital. It is calculated as the number of patients waiting at a point in time (the census count) divided by the mean number cleared (admitted and removed) from the waiting list per month. Where the clearance time for patients is longer than the desirable maximum wait (30 days for Category 1 patients), the system is unlikely to provide timely care for all patients.

At the census date, an estimated 27% of all Category 1 patients were overdue for surgery (i.e. had been on an elective surgery waiting list for more than 30 days), and 11% of all Category 2 patients had been on waiting lists for more than 12 months. Proportionately less patients were overdue for cardiothoracic surgery (14% Category 1 and 3% Category 2), coronary artery bypass surgery (20% Category 1 and 2% Category 2) and neurosurgery (11% Category 1 and 8% Category 2). For vascular surgery, 19% of Category 1 patients and 22% of Category 2 patients were overdue for surgery at the census date.

Cardiothoracic transplants

The Australian and New Zealand Cardiothoracic Organ Transplant Registry has collected information about all heart and heart-lung transplants performed in Australia and New Zealand since February 1984, when heart transplants were first done in Australia. Annual reports are produced, the latest of which covers the period from February 1984 to December 1996 (Australian and New Zealand Cardiothoracic Organ Transplant Registry 1997). The transplant units which supply data to the register are Alfred Hospital (Melbourne), Prince Charles Hospital (Brisbane), Royal Children's Hospital (Melbourne), Royal Perth Hospital, St Vincent's Hospital (Sydney) and Green Lane Hospital (Auckland). These are the only units performing heart transplant surgery in Australia and New Zealand.
Since 1984, there have been 919 heart transplants performed in Australia (Table 35). The age of recipients ranges from 1 to 68 years with a mean age of 45 years. Over 80% of recipients are males.

Table 35: Number of heart and heart-lung transplants, Australia, 1986-1996

Type of transplant	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995
Heart (a)	14	19	32	28	51	85	97	98	104	106	94	101
Heart-lung	0	0	1	1	2	14	12	19	18	13	13	13

(a) Includes 3 heterotopic transplants.

Source: Australian and New Zealand Cardiothoracic Organ Transplant Registry, 1997.
The main diagnoses for which heart transplants have been performed since 1984 are coronary artery disease (41%) and idiopathic cardiomyopathy (39%). Other diagnoses are congenital heart disease (5\%), myocarditis (3\%), familial cardiomyopathy (2%), peripartum cardiomyopathy (2%), and miscellaneous (9%).
Since 1984, the average waiting time for heart transplants has tended to increase (Table 36). It is important to bear in mind that waiting times for heart transplants are affected by the availability of a suitable donor organ, and do not necessarily reflect resource constraints. Overall, the average waiting time was 122 days with a range of 1 to 1,687 days. In contrast, average length of stay for heart transplants has decreased since 1984 (Table 36). Currently, the average length of stay is 17 days.
Actuarial survival rates for Australian and New Zealand heart transplant recipients are 87\% at one year, 84% at two years and 77% at five years.
There have been 113 heart-lung transplants performed in Australia since 1984 (Table 35). The mean age of heart-lung transplant recipients is 33 years (range 11-52), and 48% of recipients are males.
The main diagnoses leading to heart-lung transplants performed since 1984 are primary pulmonary hypertension (28\%) and Eisenmenger's syndrome (25%). Congenital heart disease was the main diagnosis for 13% of heart-lung transplants.
Actuarial survival rates for Australian heart-lung transplant recipients are 79% at one year, 72% at two years and 43% at five years.

Table 36: Average waiting time and average length of stay for heart transplants by year of transplant, Australia and New Zealand, 1984-1996

Year	Waiting time (days)			Length of stay (days)		
	Mean	Standard deviation	Min-max	Mean	Standard deviation	Min-max
	Days					
1984	44	77	4-295	50	14	32-79
1985	48	54	3-209	72	100	2-383
1986	71	78	3-295	29	16	3-88
1987	61	80	3-424	27	16	1-58
1988	77	103	1-400	27	18	1-106
1989	85	86	1-445	25	24	1-199
1990	99	154	1-842	23	20	1-107
1991	102	129	1-633	22	39	1-379
1992	88	119	1-790	20	14	2-87
1993	118	129	1-626	19	35	1-373
$1994{ }^{(a)}$	185	205	1-876	16	13	1-62
1995 ${ }^{(b)}$	184	200	3-835	16	10	1-61
1996	165	195	$2->1000$	17	14	1-93

(a) 1 patient who waited 1403 days was not included in the mean data for waiting time.
(b) 3 patients who waited 1005, 1117, 1687 days were not included in the mean data for waiting time.

Source: Australian and New Zealand Cardiothoracic Organ Transplant Registry, 1997.

Newcastle MONICA project

The Newcastle MONICA Project was part of a World Health Organization international epidemiological project which monitored trends and determinants in cardiovascular disease over a 10-year period.
The Newcastle MONICA centre collected data on all suspected cases of heart attack or coronary death among residents aged 25 to 69 years in the local government areas of Newcastle, Lake Macquarie, Maitland, Cessnock and Port Stephens.
Results from the Newcastle MONICA study have been published in two reports - Newcastle MONICA Data Book - Coronary Events 1984-1994 and Newcastle MONICA Data Book - Acute Care 1984-1994 (Steele \& McElduff 1995a; Steele \& McElduff 1995b). A coronary event was defined as a MONICA diagnosis of non-fatal definite myocardial infarction (MI), non-fatal possible MI, fatal definite MI, fatal possible MI or fatal coronary events with insufficient information for further classification. A fatal event is defined as one in which the patient was dead 28 days after the date of onset of symptoms.
Acute care data have been published for the following time periods (Steele \& McElduff 1995b):

- August 1984-December 1985
- July 1988-December 1989
- 1990 - calendar year
- 1991-calendar year
- 1992-calendar year
- 1993 - calendar year
- January 1994-March 1994.

Acute coronary care 1984-94

Most coronary events registered in the Newcastle MONICA Project were managed in hospital (Table 37). An average of 16% of coronary events were medically unattended. The proportion of events managed in hospital tended to increase over the data registration period, while the proportion of those that were medically unattended generally fell.

Table 37: Place of management for patients suffering coronary events, persons aged 25 to 69 years, Newcastle, 1984-1994

Place of management	Year										
	$1984{ }^{(a)}$	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994 ${ }^{(b)}$
	Number of events										
In hospital	235	893	1,005	1,092	1,007	1,019	1,053	984	991	1,056	245
In nursing home	1	6	10	12	8	4	6	5	4	11	2
At home by doctor	1	2	0	0	2	0	0	0	0	0	0
Medically unattended	55	186	227	215	192	213	196	182	180	149	25
Other medical consultation without bed rest, in hospital or at home	7	13	0	4	2	0	5	8	5	1	0
Insufficient data	14	52	21	12	14	0	0	0	0	0	0
Total	313	1,152	1,263	1,335	1,225	1,236	1,260	1,179	1,180	1,217	272
	Per cent of events										
In hospital	75.1	77.5	79.6	81.8	82.2	82.4	83.6	83.5	84.0	86.8	90.1
In nursing home	0.3	0.5	0.8	0.9	0.7	0.3	0.5	0.4	0.3	0.9	0.7
At home by doctor	0.3	0.2	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0
Medically unattended	17.6	16.1	18.0	16.1	15.7	17.2	15.6	15.4	15.3	12.2	9.2
Other medical consultation without bed rest, in hospital or at home	2.2	1.1	0.0	0.3	0.2	0.0	0.4	0.7	0.4	0.1	0.0
Insufficient data	4.5	4.5	1.7	0.9	1.1	0.0	0.0	0.0	0.0	0.0	0.0
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

(a) From 27 August 1984.
(b) To 31 March 1994.

Source: Steele \& McElduff 1995a.

Approximately two thirds of patients suffering coronary events were admitted to a coronary (cardiac) care or intensive care unit (Table 38). The average length of stay in a coronary care unit tended to increase over the data registration period (Table 39). In contrast the average length of stay in hospital tended to decrease (Table 39).

Table 38: Admission to coronary (cardiac) care or intensive care unit for patients suffering coronary events, persons aged 25 to 69 years, Newcastle, 1984-1994

Admission to coronary (cardiac) care or intensive care unit	Year						
	1984-85	1988-89	1990	1991	1992	1993	1994
	Number of events						
Yes	884	1,080	813	805	715	717	180
No	194	250	228	173	266	331	61
Did not go to hospital	243	335	207	193	188	159	26
Unknown	144	202	12	8	11	10	5
Total	1,465	1,867	1,260	1,179	1,180	1,217	272
	Per cent of events						
Yes	60	58	65	68	61	59	66
No	13	13	18	15	23	27	22
Did not go to hospital	17	18	16	16	16	13	10
Unknown	10	11	1	1	1	1	2
Total	100	100	100	100	100	100	100

Source: Steele \& McEIduff 1995b.

Table 39: Days in hospital for patients suffering coronary events, persons aged 25 to 69 years, Newcastle, 1984-1994

	Year						
	1984-85	1988-89	1990	1991	1992	1993	1994
	Duration in coronary care unit						
Number of cases	884	1077	812	801	713	716	180
Mean (days)	2.8	3.1	3.2	3.3	3.6	4.0	3.9
Standard deviation (days)	2.5	2.7	2.4	2.6	2.7	3.2	3.5
	Number of days in hospital altogether						
Males							
Number of cases	691	862	702	676	684	713	167
Mean (days)	9.4	7.9	7.4	6.7	6.7	6.8	6.9
Standard deviation (days)	5.7	5.2	5.0	5.1	4.9	5.2	5.4
Females							
Number of cases	315	386	319	286	294	330	75
Mean (days)	9.5	7.3	7.7	6.9	6.8	7.4	6.4
Standard deviation (days)	6.8	5.7	5.5	5.1	5.5	5.4	4.9
Persons							
Number of cases	1006	1248	1021	962	978	1043	242
Mean (days)	9.4	7.7	7.5	6.8	6.7	7.0	6.7
Standard deviation (days)	6.0	5.4	5.2	5.1	5.1	5.2	5.2

[^12]
Drug use

Introduction

This chapter presents information on drug use for cardiovascular disease in Australia. Detailed analysis from three national sources of data (the Drug Utilization Sub-Committee Database; the Survey of Morbidity and Treatment in General Practice in Australia 1990-91; and the Australian Bureau of Statistics' National Health Survey 1995) are presented as well as results from the Newcastle and Perth MONICA Projects and the Hunter Region Heart Disease Prevention Programme's Risk Factor Prevalence Study 1994.
The limitations of the national data sources, as discussed in the chapter National data sources, should be kept in mind when interpreting the results presented here. In particular, no information is available on drugs used in public hospitals.

Data sources

- The Drug Utilization Sub-Committee Database. Provides estimates of the community (i.e. non-public hospital) use of prescription medicines in Australia, and the costs of prescriptions subsidised by the Pharmaceutical Benefits Scheme.
- The Australian Bureau of Statistics' National Health Survey 1995 (Australian Bureau of Statistics 1997a; 1997b). Provides estimates of the self-reported use of medications for cardiovascular conditions.
- The Survey of Morbidity and Treatment in General Practice in Australia 1990-91 (Bridges-Webb et al. 1992). Provides estimates of drugs prescribed for cardiovascular conditions and the use of specific cardiovascular drugs.
- The Newcastle MONICA Project (Steele \& McElduff 1995a; Steele \& McElduff 1995b). Information is provided on drugs prescribed before onset of the coronary event, during the event for those who went to hospital, and at discharge for those who went to hospital and were discharged alive.
- The Perth MONICA Project (Thompson et al. 1992). Information is available on drugs prescribed before onset of the coronary event, during the event for those who went to hospital, and at discharge for those who went to hospital and were discharged alive.
- The Hunter Region Heart Disease Prevention Programme Risk Factor Prevalence Study (Alexander et al. 1995). Surveys were conducted in 1983, 1988-89 and 1994. Participants were selected from the New South Wales electoral roll. The 1994 survey included people aged 35-69 years living in the local government areas of Newcastle, Lake Macquarie, Cessnock, Maitland and Port Stephens. Potential respondents who did not participate in the main study were invited to complete a brief postal questionnaire. There were 1,670 participants in the main study. Information on aspirin use was obtained from participants in the main study only.

Estimates from the Drug Utilization Sub-Committee Database

Drugs used in the management of cardiovascular disease are classified by the Anatomical Therapeutic Chemical code under the Cardiovascular system group (ATC code ' C^{\prime}). These include inotropic drugs, antiarrhythmics, nitrates, diuretics, beta blockers, calcium channel blockers, ACE inhibitors, other antihypertensives and peripheral vasodilators. Also of interest in this report are anticoagulants, antiplatelet drugs, thrombolytic drugs and serum lipid lowering drugs which are classified as drugs for Blood and blood forming organs (ATC code ' B '). A detailed list of drugs by generic drug name is given in Appendix C.

Use and cost of prescriptions subsidised by the PBS in 1995-96

Cardiovascular drugs

Almost 125 million prescriptions were subsidised by the PBS in 1995-96 (Table 40). The total cost (i.e. cost to Government plus patient contributions) of these prescriptions was $\$ 2,686$ million. Of the highest cost medicine groups, ACE inhibitors ranked second with a total cost of $\$ 275$ million. Calcium channel blockers, cardiac therapy drugs, beta blockers and diuretics were the 6th, 11th, 17th and 20th highest cost medicine groups, respectively, in 1995-96. The total cost for each of these groups, with the exception of beta blockers, increased between 1994-95 and 1995-96.

Serum lipid lowering drugs

In 1995-96, serum lipid lowering drugs subsidised by the PBS ranked fourth highest in terms of total cost, accounting for 7% of the total cost of all drugs subsidised by the PBS in that year (Table 40). Further, between 1994-95 and 1995-96, the total cost of lipid lowering drugs increased by 30%.

Table 40: Total costs of prescriptions subsidised by the PBS, by therapeutic main group, 199596

Group	Total cost (\$)	Percentage of total cost	Percentage increase in total cost over 1994-95	Prescription volume
The $\mathbf{2 0}$ highest cost medicine groups				
Antacids, drugs for treatment of peptic ulcer	308,146,238	11.47	24.01	7,356,937
ACE inhibitors	275,093,904	10.24	14.17	8,270,940
Antiasthmatics	240,594,649	8.96	15.68	9,514,228
Serum lipid lowering drugs	194,887,133	7.26	30.36	4,040,388
Antibacterials for systemic use	178,731,272	6.66	-3.46	13,451,656
Calcium channel blockers	177,722,293	6.62	11.20	7,179,788
Psychoanaleptics	167,520,633	6.24	50.16	5,316,648
Sex hormones and modulators of the genitals	104,202,768	3.88	6.56	5,296,422
Analgesics	88,071,114	3.28	13.81	9,102,266
Drugs used in diabetes	78,874,722	2.94	13.28	2,271,266
Cardiac therapy ${ }^{(a)}$	68,132,391	2.54	6.97	3,376,501
Psycholeptics	64,955,657	2.42	17.45	8,188,460
Antiinflammatory and antirheumatic products	60,122,105	2.24	3.58	4,679,312
Ophthalmologicals	55,078,156	2.05	6.72	4,742,190
Endocrine therapy	50,033,702	1.86	15.66	305,247
Antiepileptics	49,068,201	1.83	19.84	1,227,194
Beta blocking agents	40,337,389	1.50	-1.40	3,523,607
Vaccines	38,231,357	1.42	2.75	1,972,280
Antivirals for systemic use	33,598,641	1.25	11.22	157,000
Diuretics	33,242,771	1.24	2.23	2,902,906
Other drugs used in the management of cardiovascular disease				
Other antihypertensive drugs	17,870,609	0.67	-4.64	1,047,800
Antithrombotic agents	9,328,922	0.35	29.56	914,597
Peripheral vasodilators	60,057	0.00	15.02	3,275
Total				
All medicine groups	2,685,548,163	100.00	14.67	124,888,280

(a) Includes inotropic drugs, antiarrhythmics and nitrates.

Notes: Costs include patients' contributions but exclude expenditure on miscellaneous items other than Doctor's Bag.
Prescriptions subsidised by the RPBS not included.
Excludes drug use in public hospitals.
Source: Pharmaceutical Benefits Branch, Department of Health and Family Services.

Use and cost of drugs dispensed in the community in 1994 and 1995

Cardiovascular drugs

Over 163 million prescriptions were dispensed in the Australian community in 1994 (Table 41). Of these prescriptions, 16.8% were for drugs from the cardiovascular system group (ATC code ' C '). Ninety per cent of the cardiovascular prescriptions dispensed in 1994 were subsidised by the PBS or the RPBS.

Table 41: Distribution of prescription numbers for cardiovascular system drugs, 1992-1994

ATC group/source	1992	1993	1994
Cardiovascular system (ATC code ' C ')	Number (\%)	Number (\%)	Number (\%)
Subsidised prescriptions (PBS/RPBS)	21,623,055 (13.9)	23,908,255 (14.8)	24,578,784 (15.0)
Estimated non-subsidised prescriptions ('Survey')	3,668,189 (2.4)	3,025,609 (1.9)	2,800,920 (1.7)
Total cardiovascular system	25,291,244 (16.3)	26,933,864 (16.7)	27,379,704 (16.8)
All other groups			
Subsidised prescriptions (PBS/RPBS)	84,950,147 (54.6)	92,164,284 (57.1)	94,169,303 (57.6)
Estimated non-subsidised prescriptions ('Survey')	45,210,328 (29.1)	42,255,095 (26.2)	41,871,431 (25.6)
Total all other groups	130,160,475 (83.7)	134,419,379 (83.3)	136,040,734 (83.2)
All groups			
Total	155,451,719 (100.0)	161,353,243 (100.0)	163,420,438 (100.0)

Source: Commonwealth Department of Human Services and Health 1996.
From 1992 to 1994, there was an average increase of 4.0% per year in community prescriptions for cardiovascular drugs (Table 41). This increase was due to an increase in the number of subsidised prescriptions over the 3-year period, as the number of non-subsidised prescriptions actually fell.
At the generic drug level, several cardiovascular drugs were among the ten most frequently dispensed drugs in 1994 in terms of defined daily dose per 1,000 population per day (DDD per 1,000 population per day) (Commonwealth Department of Human Services and Health 1996):

- frusemide ($22.645 \mathrm{DDD} / 1,000$ / day; ranked second),
- captopril (11.701 DDD/1,000/day; ranked fifth), and
- enalapril maleate ($10.295 \mathrm{DDD} / 1,000 /$ day; ranked ninth).

In 1995, five cardiovascular drugs were among the top ten for defined daily dose per 1,000 (Commonwealth Department of Health and Family Services 1997a):

- frusemide (22.869 DDD/1,000/day; ranked second),
- enalapril (22.191 DDD/1,000/day; ranked third; DDD change since 1994),
- hydrochlorothiazide with amiloride (14.147 DDD/1,000/day; ranked fifth; DDD change since 1994),
- felodipine (12.638 DDD/1,000/day; ranked seventh; DDD change since 1994), and
- captopril (11.813 DDD/1,000/day; ranked ninth).

In terms of prescription numbers in 1994, enalapril maleate was the only cardiovascular drug in the top ten and ranked sixth highest with a total of 3,127,370 prescriptions
(Commonwealth Department of Human Services and Health 1996). Almost all prescriptions for enalapril maleate were subsidised by the PBS or RPBS in 1994.
In 1995, enalapril maleate still ranked sixth highest for prescription numbers with 3,264,467 prescriptions (Commonwealth Department of Health and Family Services 1997c). However, atenolol was also among the top ten with 2,821,699 prescriptions (9th highest).
If only subsidised prescriptions are considered, enalapril maleate and atenolol ranked third and tenth highest in terms of prescription numbers in 1994. In contrast, no non-subsidised cardiovascular drugs were among the top ten for prescription numbers in 1994.
Cost information is available for subsidised drugs only. In 1994, enalapril maleate ranked third highest in terms of cost to government with a cost of $\$ 77$ million (Commonwealth Department of Human Services and Health 1996). Other cardiovascular drugs that ranked among the top ten for cost to government in 1994 were captopril (fourth highest) and felodipine (ninth highest) with costs of $\$ 59$ million and $\$ 34$ million respectively.
In 1995, enalapril maleate, captopril and felodipine were still among the ten highest cost drugs to government (Commonwealth Department of Health and Family Services 1997c). Enalapril maleate ranked fourth highest with a cost to government of $\$ 82$ million, captopril ranked fifth highest with a cost to government of $\$ 59$ million, and felodipine ranked ninth highest with a cost to government of $\$ 37$ million.

Serum lipid lowering drugs

Simvastatin was the highest cost subsidised drug in 1994 with a total cost to government of $\$ 95$ million (Commonwealth Department of Human Services and Health 1996). In terms of prescriptions subsidised by the PBS in 1994, simvastatin ranked ninth highest with 2,065,826 prescriptions.
In 1995, simvastatin ranked 8th highest for defined daily dose per 1,000 population per day ($12.284 \mathrm{DDD} / 1,000 /$ day). It had the tenth highest prescription count $(2,757,201$ prescriptions) and had the highest cost to government of any drug in that year (\$117 million). Almost all prescriptions for simvastatin were subsidised by the PBS or RPBS in 1995.

Trends in the use of cardiovascular drugs

The data described in this section relate mainly to cardiovascular drugs at a broad level (i.e. the ATC code therapeutic main group and subgroup levels). Therefore it should be noted that the trends observed are average trends and may not reflect trends at the individual generic drug level.
The trend data described in this section are based on numbers of prescriptions; however trend data based on DDD per 1,000 population per day are provided in Tables S40 to S47.

Drugs used in the management of hypertension

Henry et al. (1994) reviewed trends in the use of antihypertensive drugs between 1986 and 1993. Data from various sources were analysed - the PBS/RPBS database, the Pharmacy Guild Survey (available from 1989), and the Australian Medical and Pharmaceutical Indices maintained by Intercontinental Medical Statistics. Between 1986 and 1993, an average of 1.6 million people per year were receiving drug treatment for hypertension. The type of antihypertensive drugs prescribed for hypertensive patients changed over the study period, with a fall in the use of diuretics, beta blockers and other antihypertensives (i.e. centrally and peripherally acting antiadrenergic agents and agents acting on arteriolar smooth
muscle) and an increase in the use of ACE inhibitors and calcium channel blockers. Further, the co-prescribing of antihypertensive agents fell from 1.4 items per patient in 1986 to just over 1.2 items per patient in 1993.
Data on the community use of antihypertensive drugs in 1994 and 1995 indicate that the trends observed by Henry et al. have continued (Figures 13 and 14).

Refer to Table S40
Source: Drug Utilization Sub-Committee of the Pharmaceutical Benefits Advisory Committee.
Figure 13: Community use of drugs for the management of hypertension, 1990-1995

Other cardiovascular drugs

Between 1990 and 1995, nitrates were the most commonly dispensed cardiovascular drugs other than antihypertensives. Further, over the 6 -year period, prescriptions for nitrates increased from 2.3 million to 2.6 million, an average rise of 2% per year (Figure 15).The number of prescriptions dispensed in the community for inotropic drugs and peripheral vasodilators fell between 1990 and 1995. There was also a small decrease in the use of antiarrhythmic drugs over the 6 -year period.

Figure 15: Community use of other cardiovascular drugs, 1990-1995

Trends in the use of antithrombotic agents

The number of prescriptions dispensed in the community for anticoagulants, which include vitamin K antagonists and the heparin group, doubled between 1990 and 1995, from 0.6 million prescriptions to 1.2 million prescriptions (Figure 16).
The community use of antiplatelet drugs, excluding aspirin obtained over the counter, is quite small. Before 1993, there were no antiplatelet drugs listed on the PBS, although aspirin in standard doses was classified under analgesics in the central nervous system (ATC group ' N '). Therefore the use of antiplatelet drugs could only be monitored through the Pharmacy Guild survey if identification was via the ATC therapeutic subgroup B01AC. However, in 1993, ticlopidine hydrochloride was listed on the PBS. From 1990 to 1995, there was a slight increase in prescriptions for antiplatelets (Figure 16).
Prescription counts for thrombolytic drugs (streptokinase) are also small, but increased by an average of 14% per year between 1990 and 1995. This increase most likely represents use in private hospitals that dispense under the PBS.

Trends in the use of serum lipid lowering drugs

Dispensing of lipid lowering drugs through community pharmacies increased substantially over the period 1990 to 1995, from 1.2 million prescriptions to 3.7 million prescriptions (Figure 17).
The increase in the community use of lipid lowering drugs over the last few years has resulted mainly from an increase in the use of statins (Figures 18 and 19), particularly simvastatin which was listed on the PBS in late 1990 (Commonwealth Department of Human Services and Health 1996). Between 1991 and 1995, dispensing of simvastatin through community pharmacies increased by an average of 21% per year, from 1,282,289 prescriptions to $2,757,201$ prescriptions (Figure 19). Community use of pravastatin, which was not listed on the PBS until 1992, also increased rapidly between 1993 and 1995.
Prescriptions for fibrates fell between 1990 and 1991 and then remained fairly steady until 1995 when they began to increase again. However at the generic drug level, the use of clofibrate has fallen since 1990, in response to a policy decision to restrict its availability on the PBS, while that of gemfibrozil has increased.

The community use of other classes of lipid lowering drugs, namely resin binders, nicotinic acid and other cholesterol and triglyceride reducers, decreased over the period from 1990 to 1995.

Number of prescriptions

Refer to Table S43
Source: Drug Utilization Sub-Committee of the Pharmaceutical Benefits Advisory Committee.
Figure 17: Community use of lipid lowering drugs, 1990-1995

Figure 19: Community use of serum lipid lowering drugs by generic drug name, 1990-1995

Trends in the cost of subsidised cardiovascular drugs

Drugs used in the management of hypertension

Between 1990 and 1995, the total cost of subsidised prescriptions for ACE inhibitors increased from $\$ 158$ million to $\$ 270$ million (Table 42). This increase was consistent with the increase in the community use of ACE inhibitors over the same period. The total cost of subsidised prescriptions for calcium channel blockers also increased over the 6-year period, from $\$ 120$ million in 1990 to $\$ 177$ million in 1995.
For diuretics, the total cost of subsidised prescriptions decreased by 40% between 1990 and 1991 but has since remained fairly steady. A similar pattern occurred for beta blockers.
The cost of subsidised prescriptions for other antihypertensive drugs fell by an average of 15% between 1990 and 1995 which was consistent with the pattern observed for the community use of antihypertensive drugs over that period.

Other cardiovascular drugs

There was no real trend in total costs of subsidised prescriptions for antiarrhythmics or inotropic drugs over the period 1990 to 1995 (Table 42). The total cost of nitrates subsidised by the PBS/RPBS increased by an average of 9% per annum over the 6 -year period, while the cost of subsidised prescriptions for peripheral vasodilators fell from $\$ 0.6$ million in 1990 to less than $\$ 0.1$ million in 1995.

Trends in the cost of subsidised antithrombotic agents

For subsidised anticoagulants, there was an average increase of approximately 16% per year in total costs between 1990 and 1995 (Table 42). Antiplatelets have only been subsidised by the PBS/RPBS since 1993, and since then there has been a dramatic rise in the total cost of subsidised prescriptions for these drugs. Between 1990 and 1993 there was little change in the total cost of subsidised thrombolytic drugs. However between 1993 and 1995, the total cost of thrombolytic drugs subsidised by the PBS/RPBS increased threefold.

Trends in the cost of subsidised serum lipid lowering drugs

The total cost of subsidised lipid lowering drugs increased significantly between 1990 and 1995 (Table 42). In 1990, the total cost was $\$ 49$ million and by 1995 this had risen to $\$ 178$ million, an average annual increase of almost 30%. This trend was consistent with the increase in the community use of lipid lowering drugs over the 6 -year period.

Table 42: Total costs for subsidised drugs used in the management of cardiovascular disease, 1990-1995 (1995 prices ${ }^{(a)}$)

Type of drug (ATC code) / source	1990	1991	1992	1993	1994	1995
	\$'000					
Beta blockers (C07)	71,978	39,417	41,374	41,988	41,041	42,583
Calcium channel blockers (C08)	119,911	103,933	119,760	138,387	155,057	176,745
ACE inhibitors (C02E)	157,544	135,713	165,122	207,388	230,892	269,747
Diuretics						
Low ceiling diuretics, thiazides (C03A)	5,767	3,851	3,742	3,578	3,293	3,128
Low ceiling diuretics excluding thiazides (C03B)	8,142	5,074	7,213	6,200	7,878	10,619
High ceiling diuretics (C03C)	14,308	10,272	10,716	11,122	10,857	10,881
Potassium sparing agents (C03D)	5,146	3,756	3,817	4,251	4,186	4,099
Diuretics and potassium sparing agents in combination (C03E)	18,849	8,163	7,836	6,869	6,201	5,803
Total diuretics (C03)	52,212	31,116	33,324	32,018	32,415	34,531
Other antihypertensive drugs						
Centrally acting antiadrenergic agents (C02A)	16,133	8,958	8,269	7,210	6,266	6,088
Peripherally acting antiadrenergic agents (C02C)	24,375	13,206	13,453	12,888	12,019	12,051
Agents acting on arteriolar smooth muscle (C02D)	1,071	678	657	626	553	568
Total other antihypertensives (C02A, C02C, C02D)	41,580	22,842	22,379	20,723	18,837	18,708
Antiarrhythmics (C01B)	11,362	8,771	9,411	9,513	9,311	10,064
Inotropic drugs						
Cardiac glycosides (C01A)	6,967	6,172	5,703	5,641	5,569	5,717
Cardiac stimulants excluding glycosides (C01C)	-	-	-	-	-	-
Total inotropic drugs (C01A, C01C)	6,967	6,172	5,703	5,641	5,569	5,717
Nitrates (C01D)	35,904	33,244	40,347	49,632	50,916	55,721
Peripheral vasodilators (C04)	563	294	266	284	103	80
Anticoagulants (B01AA, B01AB)	3,678	3,550	4,271	5,227	6,149	7,570
Antiplatelet drugs (B01AC)	n.a..	n.a.	n.a.	123	619	1,396
Thrombolytic drugs (B01AD)	81	86	92	92	123	285
Lipid lowering drugs (B04)	48,604	92,153	115,645	125,671	140,384	177,969

[^13]Source: Drug Utilization Sub-Committee of the Pharmaceutical Benefits Advisory Committee.

Estimates from the Survey of Morbidity and Treatment in General Practice in Australia 1990-91

Prescriptions written for cardiovascular conditions

For each problem managed, doctors were asked to record the brand or generic names of up to four prescriptions issued at the encounter for that problem (Bridges-Webb et al. 1992). Non-prescription drugs recommended by the doctor were not included. Where a drug was prescribed for more than one problem, it was only recorded under the problem for which it was most required. While dosage and regimen were not recorded, doctors were asked to specify the form of presentation where several presentations were available (e.g. nystatinoral, topical, vaginal). Drugs were classified under an in house Family Medicine Research Unit classification, however the system is similar to that used in MIMS and the classification used is compatible with the Anatomical Therapeutic Chemical (ATC) code.
When interpreting the results in this section, it should be remembered that the survey only collected information about prescriptions written at the recorded encounter. No information was collected about prescriptions written at previous encounters that were not included in the survey, even if the same problem was managed. This may be a limitation for chronic conditions.
The unit record data set provided to the Australian Institute of Health and Welfare included information relating to a total of 98,556 prescriptions, an average of 99.8 prescriptions per 100 encounters and 67.7 prescriptions per 100 problems managed. At least one prescription was written at 63.6% of all encounters and for 53.5% of all problems managed.
Approximately 15,000 prescriptions were issued for cardiovascular problems (Table 43), representing 15.2% of all prescriptions written during the survey period. At least one prescription was written for 56.7% of cardiovascular problems managed.
Over 8% of all prescriptions issued were for hypertension (Table 43). A further 2.0% were written for heart failure, 1.4% for other and chronic coronary heart disease, 0.8% for angina and 0.3% for cerebrovascular disease.
At least one prescription was issued for 71.3% of all angina problems managed (Table 43). Similarly, at least one script was written for the majority (i.e. $>50 \%$) of heart failure, hypertension, rheumatic heart disease, and other and chronic coronary heart disease problems managed.

Table 43: Prescriptions written for cardiovascular conditions

| | Number of
 problems
 managed where
 at least one
 prescription
 written for
 condition | Percentage of
 problems
 managed where
 at least 1
 prescription
 written for
 condition | Total number of
 prescriptions
 written for
 condition | Percentage of
 all prescriptions
 written | (N=98,556) |
| :--- | ---: | ---: | ---: | ---: | ---: | | (K71) |
| :--- |
| Condition (ICPC code) |

Source: AIHW derived from the Survey of Morbidity and Treatment in General Practice in Australia 1990-91.

Overall, antihypertensive drugs were the most frequently prescribed type of drugs for cardiovascular conditions, accounting for 28.6% of all prescriptions for cardiovascular problems (Table 44). On average, 23.5 prescriptions for antihypertensive drugs were issued for every 100 cardiovascular problems managed. Diuretics, beta blockers, antiangina agents and cardiac glycosides were also frequently prescribed for cardiovascular conditions, accounting for a further 54.3% of all prescriptions written for cardiovascular disease.
Not surprisingly, antihypertensive agents were the most commonly prescribed type of drugs for hypertension, while antiangina agents were the most commonly prescribed type of drugs for angina and other and chronic coronary heart disease. For heart failure, diuretics were the most frequently prescribed type of drug and, for cerebrovascular disease, simple analgesics were the preferred form of drug therapy.

Table 44: Five most frequently prescribed drug subgroups for selected cardiovascular conditions

Condition (ICPC code)/drug subgroup	Number of prescriptions written for condition	Percentage of all prescriptions written for condition	Number of prescriptions written per 100 problems managed for condition
All cardiovascular disease (K)			
Antihypertensive agents	4,270	28.6	23.5
Diuretics	2,796	18.7	15.4
Beta blockers	2,470	16.5	13.6
Antiangina agents	2,020	13.5	11.1
Cardiac glycosides	836	5.6	4.6
Angina (K74)			
Antiangina agents	601	75.1	82.2
Beta blockers	66	8.3	9.0
Antihypertensive agents	37	4.7	5.1
Simple analgesics	34	4.2	4.6
Diuretics	15	1.9	2.1
Other and chronic coronary heart disease (K76)			
Antiangina agents	735	51.6	54.6
Diuretics	151	10.6	11.2
Beta blockers	138	9.7	10.2
Antihypertensives	104	7.3	7.7
Cardiac glycosides	94	6.6	7.0
Heart failure (K77)			
Diuretics	885	45.0	54.6
Cardiac glycosides	375	19.1	23.2
Mineral tonic	277	14.1	17.1
Antihypertensive agents	216	11.0	13.3
Antiangina agents	79	4.0	4.9
Hypertension (K86, K87)			
Antihypertensive agents	3,682	44.3	39.4
Beta blockers	2,122	25.5	22.7
Diuretics	1,437	17.3	15.4
Antiangina agents	469	5.6	5.0
Mineral tonic	227	2.7	2.4
Cerebrovascular disease (K89, K90)			
Simple analgesics	142	47.3	23.0
Anti emetic	43	14.2	6.9
Other blood	32	10.6	5.2
Antiangina agents	15	4.9	2.4
Antihypertensive agents	7	2.4	1.2

[^14]At the generic drug level, frusemide was the most frequently prescribed drug for cardiovascular disease (Figure 20). On average, 6.7 prescriptions for frusemide were written for every 100 cardiovascular problems managed. Other commonly prescribed generic drugs for cardiovascular conditions included atenolol, digoxin and verapamil.
The most frequently prescribed drug for angina was glyceryl trinitrate, which accounted for 34.1% of all prescriptions for angina and was prescribed at an average rate of 37.2 prescriptions per 100 angina problems managed (Figure 20). Other antiangina agents commonly prescribed for angina were sorbide nitrate, nifedipine, diltiazem and glyceryl trinitrate ointment. These four drugs accounted for a further 40.4% of all prescriptions for angina.
For other and chronic coronary heart disease, the most commonly prescribed drugs were glyceryl trinitrate, sorbide nitrate, nifedipine and diltiazem (Figure 20). On average, 19.2 prescriptions for glyceryl trinitrate were written for every 100 diagnoses of other and chronic coronary heart disease. Sorbide nitrate, nifedipine and diltiazem were prescribed at rates of 16.6, 7.3 and 7.1 prescriptions, respectively, per 100 diagnoses.
Frusemide was the most frequently prescribed drug for heart failure. Frusemide accounted for 32.6% of all prescriptions for heart failure, and was prescribed at an average rate of 39.6 prescriptions per 100 heart failure diagnoses (Figure 20). Digoxin, potassium chloride, captopril, and amiloride were also commonly prescribed for heart failure, accounting for a further 42.7% of prescriptions for heart failure.
The five most frequently prescribed drugs for hypertension were atenolol (9.7 scripts per 100 diagnoses), enalapril maleate (7.1 scripts per 100 diagnoses), metoprolol (6.9 scripts per 100 diagnoses), verapamil (6.6 scripts per 100 diagnoses), and prazosin hydrochloride (6.3 scripts per 100 diagnoses) (Figure 20). Just over 40% of all prescriptions written for hypertension were for these five drugs.
Aspirin accounted for 45% of all prescriptions written for cerebrovascular disease
(Table S14). On average, 22.1 scripts for aspirin were issued for every 100 cerebrovascular problems managed (Figure 20). Prochlorperazine and warfarin were the second and third most frequently prescribed drugs for cerebrovascular disease.

Refer to Tables S9-S14
Source: AIHW derived from the Survey of Morbidity and Treatment in General Practice in Australia 1990-91.

Figure 20: Distribution of the ten most frequently written prescriptions for selected cardiovascular conditions, 1990-91

Prescribing of cardiovascular drugs

The Survey of Morbidity and Treatment in General Practice in Australia 1990-91 classifies cardiovascular drugs into the following nine groups:

- antihypertensive agents;
- antiarrythmic agents;
- antiangina agents;
- cardiac glycosides;
- beta blockers;
- adrenergenic stimulants;
- peripheral vasodilators;
- antimigraine drugs; and
- other cardiovascular drugs.

The survey classifies diuretics as urogenital drugs but in the analysis that follows diuretics have been included as cardiovascular drugs. The lipid lowering drugs clofibrate and cholestyramine, and the antithrombotic drugs warfarin, heparin and phenindione, are classified under the blood system and are not included in the analysis presented here.
A list of cardiovascular drugs by group and generic drug name is provided in Appendix \mathbf{F}.
The unit record data set provided to the Australian Institute of Health and Welfare included information relating to a total of 98,556 prescriptions, an average of 99.8 prescriptions per 100 encounters and 67.7 prescriptions per 100 problems managed. At least one prescription was recorded at 63.6% of all encounters and for 53.5% of all problems managed.
Prescriptions for cardiovascular drugs (14,047 prescriptions) accounted for 14.3% of all prescriptions written during the survey period and were issued at an average rate of 9.6 prescriptions per 100 problems managed (Table S15).
The number of cardiovascular prescriptions written per 100 problems managed increased with age for both males and females (Figure 21). Between the ages of 25 and 64 years, the rate of cardiovascular prescriptions written was slightly greater for males than females, however the reverse was true from age 65 years onwards.
The four most frequently prescribed types of cardiovascular drugs were antihypertensive agents, diuretics, beta blockers and antiangina agents (Table 45). Together these four categories accounted for 86.6% of all cardiovascular prescriptions. Antihypertensive drugs were prescribed at an average rate of 3.0 prescriptions per 100 problems managed, while diuretics, beta blockers and antiangina agents were prescribed at average rates of 2.1, 1.8 and 1.4 scripts per 100 problems managed.

At the generic drug level, frusemide and atenolol were the most commonly prescribed drugs (Table S16).

Number of cardiovascular written prescriptions per 100 problems managed

Refer to Table S15
Source: Survey of Morbidity and Treatment in General Practice in Australia 1990-91.

Figure 21: Number of cardiovascular prescriptions written, age-sex specific rates per 100 problems managed, 1990-91

Table 45: Distribution of cardiovascular drugs by drug subgroup

Drug subgroup	Number of prescriptions written	Percentage of all cardiovascular prescriptions written	Percentage of all prescriptions written	Number of prescriptions written per 100 problems managed ($\mathrm{N}=145,645$)
Antihypertensive agents	4,390	31.3	4.5	3.0
Diuretics	3,058	21.8	3.1	2.1
Beta blockers	2628	18.7	2.7	1.8
Antiangina agents	2083	14.8	2.1	1.4
Cardiac glycosides	859	6.1	0.9	0.6
Other cardiovascular system drugs	547	3.9	0.6	0.4
Antimigraine drugs	225	1.6	0.2	0.2
Antiarrhythmic agents	173	1.2	0.2	0.1
Peripheral vasodilators	66	0.5	0.1	<0.1
Adrenergenic stimulants	14	0.1	< 0.1	<0.1
Other cardiovascular drugs	6	0.0	<0.1	<0.1
All cardiovascular drugs ${ }^{(a)}$	14,047	100.0	14.3	9.6

(a) Components may not add to total due to rounding.

Source: AIHW derived from the Survey of Morbidity and Treatment in General Practice in Australia 1990-91.
Nearly 90% of all cardiovascular prescriptions (12,613 prescriptions) were written as part of the management for cardiovascular conditions. In terms of the management of specific conditions, 55.4% of all cardiovascular prescriptions were written for hypertension (Table 46). A further 11% were written for heart failure, followed by 9% for other and chronic coronary heart disease and 5% for angina.

Table 46: Ten conditions most frequently managed by cardiovascular prescriptions

Problem managed (ICPC code)	Total number of cardiovascular prescriptions written for condition	Percentage of all cardiovascular prescriptions ($\mathrm{N}=14,047$)
Hypertension (K86 + K87)	7,779	55.4
Heart failure (K77)	1,580	11.2
Other and chronic coronary heart disease (K76)	1,246	8.9
Angina pectoris (K74)	735	5.2
Lipid metabolism disorder (T93)	480	3.4
Atrial fibrillation/flutter (K78)	290	2.1
Migraine (N89)	255	1.8
Disease of heart Not Otherwise Specified (K84)	198	1.4
Circulatory check up (K31)	127	0.9
Swollen ankles/ooedema (K07)	122	0.9

Source: AIHW derived from the Survey of Morbidity and Treatment in General Practice in Australia 1990-91.
Cardiovascular prescriptions accounted for more than 50% of all scripts written for people with hypertension, angina, other and chronic coronary heart disease, heart failure, acute myocardial infarction and rheumatic heart disease (Table 47). Further, at least one cardiovascular prescription was issued as part of the management regimen for 69.1% of angina problems, 63.9% of heart failure problems, 62.8% of hypertension and 56.3% of other and chronic coronary heart disease.

Table 47: Number of cardiovascular prescriptions written for cardiovascular conditions

Condition (ICPC code)	Number of cardiovascular prescriptions written for condition	Percentage of all prescriptions written for condition	Number of cardiovascular prescriptions written per 100 problems managed for condition	Percentage of problems managed for which at least one cardiovascular prescription written for condition
Rheumatic heart disease (K71)	32	52.5	65.3	36.7
Angina (K74)	735	91.9	100.5	69.1
Acute myocardial infarction (K75)	33	60.0	46.5	29.6
Other and chronic coronary heart disease (K76)	1,246	87.4	92.5	56.3
Coronary heart disease (K74-K76)	2,014	88.4	93.7	59.8
Heart failure (K77)	1,580	80.3	97.5	63.9
Hypertension (K86, K87)	7,779	93.6	83.2	62.8
Cerebrovascular disease (K89, K90)	52	17.4	8.5	6.7
Atherosclerosis (K91)	4	21.1	9.1	4.5
Peripheral vascular disease (K92)	52	37.1	12.2	10.5
All cardiovascular disease (K)	12,613	84.4	69.3	50.4

[^15]
Estimates from the Australian Bureau of Statistics' National Health Survey 1995

Use of medication for recent cardiovascular condition

Use of medication for recent cardiovascular condition by age

The percentage of males and females reporting taking any medication for a recent cardiovascular condition increased dramatically with age until the 45-54 year age group, after which it remained fairly constant at about 98%. The proportions of males and females taking any medication for cerebrovascular disease and 'ill-defined signs and symptoms of heart conditions' were less than for the other cardiovascular conditions (Table 48).

Table 48: Percentage of males and females reporting taking any medication for a recent cardiovascular condition by age group, 1995

Sex/Type of condition	Age group (years)							
	<25	25-34	35-44	45-54	55-64	65-74	75+	All ages
Males								
Hypertension	*79.2	87.6	96.0	96.8	98.6	98.4	97.4	97.6
Heart disease	*43.1	85.5	97.1	94.2	92.2	90.6	95.8	92.1
Atherosclerosis	-	-	-	*	*95.4	100.0	*100.	92.2
Cerebrovascular disease ${ }^{(\mathrm{a})}$	$\begin{array}{r} * 100 . \\ 0 \end{array}$	-	*	*77.4	*	67.4	59.8	61.8
Other diseases of the circulatory system	97.0	72.6	89.2	98.9	97.0	96.5	91.5	95.2
III-defined signs and symptoms of heart conditions	*28.2	-	72.9	74.7	60.6	74.5	75.1	69.7
All cardiovascular ${ }^{(b)}$	64.3	81.8	95.4	96.6	96.6	95.2	94.4	95.1
Females								
Hypertension	64.5	79.5	96.9	97.0	98.4	98.4	97.8	97.5
Heart disease	*	*	100.0	97.4	89.1	95.1	97.3	94.8
Atherosclerosis	-	-	-	*	85.2	100.0	100.0	91.9
Cerebrovascular disease ${ }^{(a)}$	-	*100.0	*100.0	*40.8	*27.1	84.6	77.4	69.9
Other diseases of the circulatory system	*39.4	57.4	83.1	81.1	97.2	98.0	97.1	92.8
III-defined signs and symptoms of heart conditions	*32.1	*22.1	*82.2	77.8	72.1	82.8	78.5	76.5
All cardiovascular ${ }^{(b)}$	49.6	68.2	95.2	94.2	96.2	97.7	97.0	95.4

(a) Includes after-effects of stroke.
(b) Each person may have reported more than one type of condition and therefore components do not add to totals.
-nil

* Subject to high sampling variability.

Source: AIHW derived from the ABS National Health Survey 1995.

Box 12: National Health Survey explanatory notes

Age-specific and age-standardised estimates are provided here. The standard population used for age standardisation was the estimated total mid-year Australian population in 1991 (refer to the Glossary).

Very small estimates are subject to high standard errors (relative to the size of the estimate). In this report, only estimates which were derived from a numerator estimate with a relative standard error of less than 25% are considered reliable. However, estimates with relative standard errors between 25% and 50% have been included and are preceded by an asterisk (e.g. *1.6) to indicate that they should be interpreted with caution. Estimates with relative standard errors greater than 50% have not been shown as they are considered too unreliable for use (Australian Bureau Statistics 1997a). These estimates have been replaced by an asterisk (${ }^{*}$).
Definitions of the items included in the tables below are provided in Appendix A.

Just over 90% of males and females reported taking 'heart' medication (i.e. medication for fluid, the heart or blood pressure) for a recent cardiovascular condition. Over 95% of males and females reporting hypertension, reported taking 'heart' medication for that condition. Relatively more males (68.8%) than females (53.2%) took 'heart' medication in the 25-34 year age category (Table 49).

Table 49: Percentage of males and females reporting taking 'heart' medication for a recent cardiovascular condition by age group, 1995

Sex/Type of condition	Age group (years)							
	<25	25-34	35-44	45-54	55-64	65-74	75+	All ages
Males								
Hypertension	*79.2	84.4	96.0	95.7	98.3	96.9	94.5	96.3
Heart disease	*26.8	*52.4	85.7	87.5	87.3	81.7	91.1	84.8
Atherosclerosis	-	-	-	-	*95.4	*60.6	*67.5	67.3
Other diseases of the circulatory system	*	*38.0	36.5	54.9	72.2	58.8	51.8	57.8
III-defined signs and symptoms of heart conditions	*28.2	*	100.0	92.5	89.9	91.2	94.4	89.6
All cardiovascular ${ }^{(a, b)}$	28.8	68.8	88.3	91.7	94.5	90.7	92.0	90.7
Females								
Hypertension	53.5	77.5	93.1	94.6	96.2	96.6	96.2	95.4
Heart disease	*	*	*86.0	86.8	82.0	89.7	88.4	87.0
Atherosclerosis	-	-	-	*	*61.7	*100.0	*100.0	91.2
Other diseases of the circulatory system	-	-	*9.1	36.0	53.4	54.4	61.5	49.6
III-defined signs and symptoms of heart conditions	*32.1	*55.8	*75.7	69.2	85.5	89.1	93.1	86.9
All cardiovascular ${ }^{(a, b)}$	32.9	53.2	78.4	88.2	91.6	93.4	93.7	90.3

[^16]Source: AIHW derived from the ABS National Health Survey 1995.

Use of medication for recent cardiovascular condition by sex

After adjusting for age, 84.8% of males and 75.8% of females reported taking some form of medication for a recent cardiovascular condition. The prevalence of people taking 'heart' medication for a recent cardiovascular condition was around 63% for both males and females (Table 50).
Females reported higher rates of taking medication for hypertension, atherosclerosis and 'illdefined signs and symptoms of heart conditions'. Males reported higher rates (33.6\%) than females (15.9%) for taking 'heart' medication for 'other diseases of the circulatory system', whereas females reported greater rates (18.0%) than males (3.5%) for cerebrovascular disease (Table 50).

Table 50: Percentage ${ }^{(a)}$ of males and females reporting taking medication for a recent cardiovascular condition by sex, 1995

Type of condition	Any medication		Heart medication	
	Males (SE)	Females (SE)	Males (SE)	Females (SE)
Hypertension	65.7 (1.1)	83.5 (1.3)	64.6 (1.1)	73.5 (1.1)
Heart disease	74.9 (2.5)	67.7 (2.7)	55.7 (2.0)	56.0 (2.3)
Atherosclerosis	19.2 (2.7)	21.9 (4.3)	13.8 (2.3)	21.9 (4.3)
Cerebrovascular disease ${ }^{(b)}$	40.6 (4.7)	35.6 (4.5)	3.5 (0.6)	18.0 (3.0)
Other diseases of the circulatory system	91.5 (3.0)	60.3 (2.2)	33.6 (1.4)	15.9 (0.9)
III-defined signs and symptoms of heart conditions	55.5 (2.4)	64.6 (2.6)	53.8 (2.3)	58.5 (2.4)
All cardiovascular	84.8 (1.2)	75.8 (1.0)	63.3 (0.9)	63.7 (0.8)

(a) Age-standardised to the mid-1991 total Australian population.
(b) Includes after-effects of stroke.

SE: Standard error
Source: AIHW derived from the ABS National Health Survey 1995.

Use of medication for recent cardiovascular condition by State and Territory

After adjusting for age, the reported rate for taking any medication for a recent cardiovascular condition was highest in Queensland (88.0%) and Victoria (83.2%) and lowest in South Australia (59.6%) and the Australian Capital Territory (58.6%). For use of specific 'heart' and blood pressure medications, reported rates were highest in Queensland (78.9\%) and Victoria (68.3\%) and lowest in South Australia (48.7\%), Western Australia (51.1\%) and the Australian Capital Territory (51.4\%) (Table 51).

Table 51: Percentage ${ }^{(a)}$ of people reporting taking any medication for a recent cardiovascular condition by State and Territory, 1995

Medication	NSW	Vic	Qld	WA	SA	Tas	ACT	NT
					Per cent (SE)			
Any								
medication	$69.6(1.1)$	$83.2(1.6)$	$88.0(2.1)$	$68.0(2.5)$	$59.6(2.1)$	$74.9(4.4)$	$58.6(5.6)$	$68.7(11.3)$
Heart medication	$55.8(0.9)$	$68.3(1.4)$	$78.9(1.9)$	$51.1(1.9)$	$48.7(1.8)$	$60.5(3.6)$	$51.4(5.0)$	$64.0(10.7)$

(a) Age-standardised to the mid-1991 total Australian population.

SE: Standard error
Source: AIHW derived from the ABS National Health Survey 1995.

Data from the Newcastle and Perth MONICA Projects

Newcastle MONICA project

This study is described in detail on page 76. Information is available on drugs prescribed before onset of a coronary event, during the event for those who went to hospital, and at discharge for those who went to hospital and were discharged alive.
As there is a lack of national data on drug use in hospitals, a summary is provided here of the Newcastle MONICA results on drugs prescribed during hospitalisation for patients suffering coronary events. In 1994, anticoagulants were the most common type of drug prescribed during hospitalisation for persons suffering coronary events and were prescribed for 81% of cases managed (Table 52). Aspirin was the second most commonly prescribed drug in that year, being prescribed during hospitalisation for 80% of cases managed in hospital. Other drugs commonly prescribed during hospitalisation were beta blockers and calcium channel blockers.
Trends indicate that the use of most cardiovascular drugs during hospitalisation for coronary events has generally increased since 1984-85 (Table 52). This was true for anticoagulants, aspirin, antiarrhythmic drugs, beta blockers, calcium channel blockers, ACE inhibitors, thrombolytic therapy, and hypolipidaemic agents. However, the use of digoxin/digitalis during hospitalisation for coronary events fell over the 10-year period. The use of diuretics and 'other antihypertensive drugs' during hospitalisation fell between 1984-85 and 1988-89 but have remained fairly stable since.

Table 52: Percentage of patients suffering coronary events who were prescribed certain drugs during hospital admission, persons aged 25 to 69 years, Newcastle, 1984-1994

Type of drug	Year						
	1984-85	1988-89	1990	1991	1992	1993	1994
Anticoagulants	65.1	66.2	72.0	77.0	74.7	78.6	81.2
Aspirin	17.4	56.8	66.3	69.9	76.1	80.5	80.0
Other antiplatelet agents	0.2	1.2	0.5	-	-	-	-
Antiarrhythmic-not Beta blockers	23.3	17.9	20.3	20.1	22.0	25.6	28.6
Beta blockers	41.0	40.9	44.3	44.9	49.4	51.9	55.5
Calcium channel blockers	26.7	41.8	48.5	49.5	52.3	54.1	52.2
Ace inhibitors	2.7	16.9	22.8	29.8	31.2	36.6	35.5
Diuretics	40.6	31.0	29.8	31.2	30.4	31.9	29.8
Other antihypertensive drugs	19.4	7.5	6.7	5.5	4.9	5.7	6.5
Digoxin/digitalis	25.3	19.3	17.1	17.6	15.3	16.0	15.5
Nitrates	71.9	75.0	79.8	85.1	-	-	-
Hypolipidaemic agents	0.8	5.0	6.1	7.6	9.4	12.0	9.8
Thrombolytic therapy	0.2	15.4	18.6	20.8	18.3	19.5	22.0
Insulin	-	5.6	5.6	5.9	5.5	7.4	3.7
Oral hypoglycaemic agents	-	4.5	4.6	4.7	6.0	5.1	5.7

Source: Steele \& McElduff 1995b.

Perth MONICA project

The Perth MONICA centre collected data on all suspected cases of heart attack or coronary death among residents aged 25 to 64 years living within the Perth statistical division. The study was conducted over a 10-year period and registration began in 1984.
Trends in the drug treatment of patients treated in hospital for acute myocardial infarction have been published by Thompson et al. (1992) for the period 1984 to 1990. In their paper, Thompson and colleagues defined a coronary event as a 'definite acute myocardial infarction or a fatal possible acute myocardial infarction or a final clinical diagnosis coded to the ICD-9 codes 410 or 411 (except 411.1)'.
For drug therapy during the hospital stay, there was a steady increase in the use of beta blockers from 52% in 1984 to 76% in 1990 (Table 53). The use of antiplatelet drugs (mainly aspirin), lipid lowering drugs and thrombolytic agents (principally streptokinase) also increased over the 7 -year period. However, the proportion of patients receiving digitalis, other antiarrhythmics and diuretics during their hospital stay fell between 1984 and 1990.

Table 53: Percentage of patients aged 25 to 64 years with acute coronary symptoms prescribed certain drugs during hospital admission(a), Perth, 1984-1990

	Year							
Type of drug	1984	1985	1986	1987	1988	1989	1990	All
Beta blockers	51.5	56.8	62.4	64.3	71.0	75.9	76.1	65.6
Calcium channel blockers	52.8	54.2	53.1	57.6	54.4	49.1	45.6	52.3
Diuretics	42.0	41.6	39.1	33.8	33.8	35.7	33.3	37.0
Other antihypertensive agents	9.8	13.1	11.3	9.9	14.2	16.6	17.5	13.2
Digitalis	12.2	10.5	10.0	7.8	10.2	9.8	7.8	9.7
Other inotropic agents	10.9	11.1	12.5	12.8	13.6	14.0	14.3	12.8
Antiarrhythmic agents	49.3	36.4	35.4	33.0	28.9	29.3	22.6	33.4
Anticoagulants	83.1	84.1	86.5	86.9	84.9	74.2	80.7	82.9
Thrombolytic agents	2.4	7.9	12.2	17.4	24.6	30.5	32.4	18.4
Antiplatelet agents	25.1	47.2	48.6	63.1	80.4	88.9	87.9	63.3
Intravenous nitrates	44.8	48.3	42.3	41.9	40.5	45.3	48.5	44.5
Insulin	5.2	8.5	10.4	12.3	10.2	9.5	11.2	9.6
Hypolipidaemic agents	0.7	0.4	1.4	3.0	4.8	3.7	4.2	2.6
Number of patients							748	796

(a) Information on drugs prescribed during admission was not available for approximately 2% of patients each year. These patients were treated in non-teaching hospitals and are assumed not to have been prescribed the drug in question.

Source: Thompson et al. 1992.

Data from the Hunter Region Heart Disease Prevention Programme

The 1994 survey of the Hunter Region Heart Disease Prevention Programme Risk Factor Prevalence Study asked several questions about aspirin use (Alexander et al. 1995).
Specifically, respondents were asked how often they took aspirin, and whether they had taken aspirin during the last two weeks to prevent or treat heart disease.
In $1994,5 \%$ of males and 2% of females aged 35 to 64 years reported that they had taken aspirin in the two weeks before interview to prevent or treat heart disease (Table 54). The
proportion of males and females taking aspirin to prevent or treat heart disease increased with age. Those aged 65 to 69 years were particularly more likely to have taken aspirin than those aged 64 years and under.

Table 54: Percentage ${ }^{(\mathrm{a})}$ of males and females who took aspirin in the two weeks before interview to prevent or treat heart disease, 35 to 69 year olds, Hunter region, 1994

Age group (years)	Males	Females
$35-39$	-	1
$40-44$	1	-
$45-49$	3	1
$50-54$	9	1
$55-59$	9	4
$60-64$	12	6
$65-69$	22	11
Total (35-64)	5	2

(a) Weighted per cent
-nil
Source: Alexander et al. 1995
Over the period 1983 to 1994, the proportion of males aged 35 to 64 years taking aspirin every day increased from 3% to 8% (Table 55). In fact, in each age group, males in 1994 were more likely to take aspirin every day than their counterparts in 1983 and 1988-89. Among females, however, this was only true for those aged 55 to 69 years, and overall the proportion of females taking aspirin every day remained constant at 3%.

Table 55: Percentage ${ }^{(a)}$ of males and females taking aspirin every day, 35 to 69 year olds, Hunter region, 1983-1994

Sex / age group (years)	Year		
	1983	1988-89	1994
Males			
35-39	1	-	-
40-44	2	2	-
45-49	3	-	6
50-54	4	6	17
55-59	5	12	16
60-64	4	12	17
65-69	n.a.	18	28
Total (35-64)	3	5	8
Females			
35-39	2	1	1
40-44	2	1	-
45-49	5	4	1
50-54	4	5	1
55-59	3	4	7
60-64	4	8	11
65-69	n.a.	15	18
Total (35-64)	3	3	3

(a) Weighted per cent
-nil
n.a. not applicable, people aged 65-69 years were not included in the 1983 survey.

Source: Alexander et al. 1995.

Health care costs

Introduction

This chapter presents information on the costs of health care for cardiovascular diseases in Australia. Results from two sources are presented - the Disease Costs and Impact Study 1993-94; and 1994-95 Australian casemix data.

The Disease Costs and Impact Study

This section provides estimates of the health care costs of cardiovascular disease. These estimates come from the Disease Costs and Impact Study (DCIS) which is conducted by the Australian Institute of Health and Welfare. The DCIS estimates the direct costs of health services by taking known aggregate expenditures on health care and apportioning them to disease categories using Australian data on disease prevalence and costs (Australian Institute of Health and Welfare 1996a). Estimates for the health care costs (i.e. the costs of hospital admitted patient and outpatient services, nursing homes, medical services, allied health services, pharmaceuticals, and 'other') of cardiovascular diseases in 1993-94 are provided here.

Cardiovascular health care costs in 1993-94

In 1993-94, health care costs for cardiovascular diseases totalled $\$ 3,719$ million (Table 56). This represented 12% of the total health care costs for all diseases in that year (\$31,397 million). Hospital admitted patient expenditure accounted for 41% of the health care costs of cardiovascular disease. Pharmaceutical costs accounted for a further 20%, while nursing home and medical services expenditure each accounted for approximately 15%.
Coronary heart disease was the major contributor to cardiovascular health care costs in 1993-94, accounting for 25% ($\$ 894$ million) of the total (Table 56). Approximately one fifth ($\$ 168$ million) of the cost of coronary heart disease was attributable to acute myocardial infarction.
Other major contributors to the health care costs of cardiovascular disease in 1993-94 were hypertensive disease, cerebrovascular disease, and 'other forms of heart disease', particularly heart failure (Table 56).
In terms of specific sectors of expenditure for cardiovascular diseases, coronary heart disease was the major contributor to hospital admitted patient costs (Table 56). Cerebrovascular disease dominated nursing home costs, while hypertensive disease was the major contributor to medical, pharmaceutical, allied health professional and outpatient costs.
Overall, the health care costs of cardiovascular disease were similar for males and females (Table 57). The largest relative differences were for nursing home costs, which were higher for females; and hospital admitted patient costs, which were higher for males.
For specific cardiovascular conditions, the differences in costs between males and females were more pronounced (Tables S48-S59). The health care costs of coronary heart disease,
atherosclerosis and peripheral vascular disease were higher for males than females across nearly all sectors of expenditure. In contrast, the costs of hypertensive disease, cerebrovascular disease, rheumatic heart disease and heart failure were generally higher for females than males.

Box 13: Health expenditure explanatory notes

The categories of recurrent expenditure on health are apportioned using hospital morbidity data, casemix data, the Survey of Morbidity and Treatment in General Practice in Australia 1990-91, and the Australian Bureau of Statistics' National Health Survey 1989-90. The sectors of expenditure included here are hospital admitted patients and outpatients; nursing homes; medical services; allied health professional services; pharmaceuticals; and 'other', which includes research, other institutional (not elsewhere classified), administration, and other non-institutional. An overview of the disease costing methodology can be found in Appendix \boldsymbol{H} and more detailed information on the methodology can be found in Disease Costing Methodology Used in the Disease Costs and Impact Study 1993-94 by Mathers et al. (in press).
The cardiovascular conditions included have been classified according to the International Classification of Diseases Ninth Revision (ICD-9-CM) and are listed here along with their corresponding International Classification of Primary Care codes.

Cardiovascular disease	$\begin{aligned} & \text { ICD-9-CM } \\ & \text { codes } \end{aligned}$	ICPC codes
Rheumatic heart disease	390-398	K71
Hypertensive disease	401-405	K86, K87
Coronary heart disease	410-414	K74-K76
acute myocardial infarction	410	K75(p)
other coronary heart disease	411-414	K74, K75 (p), K76
Other forms of heart disease	420-429	K77-K80, K83, K84(p)
cardiac dysrhythmias	426-427	K78-K80, K84(p)
heart failure	428	K77
other	420-425, 429	K70(p), K84(p), K83
Cerebrovascular disease	430-438	K89, K90, K92(p)
Diseases of arteries, arterioles and capillaries	440-448	K91, K92(p), K99(p)
atherosclerosis	440	K91
peripheral vascular disease	441-444	K92(p), K99(p)
other diseases of arteries, arterioles and capillaries	446-448	K99(p)
Other cardiovascular disease	$\begin{aligned} & 415-417, \\ & 451-459 \end{aligned}$	$\begin{aligned} & \text { K82, K84(p), K88, K93-K96, K96, } \\ & \text { K99(p) } \end{aligned}$

The health care costs of cardiovascular diseases increased with age for both males and females in 1993-94. For all cardiovascular disease, costs were of a similar order of magnitude for males and females up to age 44 years (Figure 22). Between the ages of 45 and 74 years, costs were substantially higher for males than females. However, from age 75 onwards costs were higher for females.
For coronary heart disease, health care costs were higher for males than females at every age group except 75+ years (Figure 23). Among males, health care costs rose rapidly between the ages of 35 and 74 years but fell in the older age group. For females, the rise in costs also began at age 35 years and continued to increase through to the oldest age group.

Table 56: Health care costs of cardiovascular diseases, Australia, 1993-94 (\$ '000)

Disease	Hospital admitted patient ${ }^{(a)}$	Hospital outpatient	Nursing home	$\text { Medical }{ }^{(b)}$)	Allied health professional	Pharmaceutical	Other ${ }^{(c)}$	Total
Rheumatic heart disease	17,660	1,106	525	1,824	203	1,473	1,198	23,987
Hypertensive disease	23,014	31,774	6,680	216,620	20,138	476,063	56,670	830,990
Coronary heart disease	556,514	17,724	72,533	87,978	5,491	105,365	48,839	894,443
Acute myocardial infarction	128,575	451	25,274	3,217	73	1,063	9,165	167,819
Other	427,939	17,273	47,259	84,760	5,418	104,302	39,674	726,624
Other forms of heart disease	311,237	41,450	167,112	92,860	4,679	81,073	42,509	740,921
Cardiac dysrhythmias	96,008	18,319	28,718	35,777	695	30,890	13,173	223,581
Heart failure	143,262	18,017	135,252	47,235	3,931	45,237	23,180	416,113
Other	71,967	5,114	3,142	9,848	53	4,946	6,156	101,227
Cerebrovascular disease	269,417	13,652	265,403	31,415	4,752	13,026	32,813	630,476
Diseases of arteries, arterioles, \& capillaries	164,617	15,519	36,522	21,721	2,067	10,673	17,913	269,034
Atherosclerosis	36,181	6,797	8,092	1,633	139	1,636	5,142	59,619
Peripheral vascular disease	112,999	5,921	25,377	15,420	1,705	7,044	10,998	179,465
Other	15,437	2,802	3,053	4,668	223	1,994	1,773	29,950
Other cardiovascular disease	166,588	12,343	37,427	48,476	2,387	25,259	16,854	309,334
Unspecified treatment \& aftercare	4,394	1,126	648	1,057	-	884	507	8,616
Prevention \& screening	81	8,497	-	1,470	-	911	684	11,644
Total	1,513,522	143,191	586,850	503,421	39,717	714,726	217,987	3,719,414

(a) Includes public, private and repatriation hospitals.
(b) Medical services for private patients in hospitals are included under 'Hospital admitted patient'.
(c) Includes costs for the following areas of recurrent health expenditure-'Research', 'Other institutional (nec)', 'Administration', and 'Other noninstitutional'.
Source: Australian Institute of Health and Welfare, Disease Costs and Impact Study.

Up to the age of 74 years, the health care costs of 'other forms of heart disease' were slightly higher for males than females (Figure 23). However, between the age groups 65-74 years and $75+$ years, the costs for females rose by 248% compared to a rise of 55% for males.
For cerebrovascular disease, the patterns by age group and sex were very similar to that of 'other forms of heart disease'.

Among both males and females, the health care costs of hypertensive disease increased steadily with age until age 74 years and then fell (Figure 23). From age 45 years onwards, costs were higher for females than males.

Table 57: Health care costs of all cardiovascular disease by sex and sector of expenditure, Australia, 1993-94 (\$ '000)

Sector of expenditure	Males	Females	Ratio of costs for males to costs for females
Hospital admitted patient ${ }^{(a)}$	876,458	637,064	1.4
Hospital outpatient	73,258	69,933	1.0
Nursing home	217,177	369,673	0.6
Medical ${ }^{(b)}$	243,960	259,461	0.9
Allied health professional	20,987	18,730	1.1
Pharmaceutical	303,065	411,662	0.7
Other ${ }^{(c)}$	107,514	110,472	1.0
Total	1,842,419	1,876,995	1.0

(a) Includes public, private and repatriation hospitals.
(b) Medical services for private patients in hospitals are included under 'Hospital admitted patient'.
(c) Includes costs for the following areas of recurrent health expenditure-'Research', 'Other institutional (nec)', 'Administration', and 'Other non-institutional'.

Source: Australian Institute of Health and Welfare, Disease Costs and Impact Study.

The health care costs of diseases of the arteries, arterioles and capillaries increased substantially from middle age onwards (45-54 years) for females (Figure 23). For males, the rise in costs also began from age 45 years; however costs for the $75+$ year age group were slightly lower than for the 65-74 year age group.

The costs of all cardiovascular disease also tended to increase with age for each sector of expenditure (Figure 24). In each age group, the highest costs were for hospital admitted patient services. The second most costly sector of expenditure was medical for persons aged $0-34$ years, pharmaceutical for persons aged 35-74 years, and nursing home for persons aged 75 years and over. Between the age groups 65-74 years and $75+$ years, nursing home costs for cardiovascular disease increased by over 500% from $\$ 75$ million to $\$ 489$ million.

(a) Medical services for private patients in hospitals are included under 'Hospital inpatient'.
(b) Includes public, private and repatriation hospitals.

Refer to Table S48
Source: AIHW, Disease Costs and Impact Study.
Figure 24: Health care costs for cardiovascular disease by age group and sector of expenditure, Australia, 1993-94

Australian casemix data

The term 'casemix' and its classification into Diagnosis Related Groups (DRGs) are explained on page 68. The Australian Casemix Report provides national information on public and private acute hospital activity for each financial year (Commonwealth Department of Health and Family Services 1997b). This hospital activity is measured by Australian National Diagnosis Related Groups (AN-DRGs). Information is available on average cost and cost by volume for AN-DRGs.

AN-DRG costs in 1995-96

Public and private cost weights are calculated in different ways, using different cost components (Commonwealth Department of Health and Family Services 1996b). Therefore it is not appropriate to use the cost estimates provided in this section to suggest that the private sector is more cost effective than the public sector or vice versa.

In terms of cost by volume, 'heart failure \& shock' (AN-DRG 252) was the leading cardiovascular AN-DRG in public acute hospitals with a total cost of $\$ 117$ million in 1995-96 (Table 58). Among private hospitals, AN-DRG 291 ('coronary bypass without invasive cardiac investigation procedure without major complications and comorbidities') was the leading cardiovascular AN-DRG for cost by volume. Five of the cardiovascular AN-DRGs with the highest cost by volume in public hospitals were also among the top ten in private hospitals.

Table 58: The 10 cardiovascular AN-DRGs (V3.0) with the highest cost by volume, by type of hospital, Australia, 1995-96

Hospital type / AN-DRG	Description	Number of separations	Cost by volume (\$ million)	\% of total cost by volume for hospital type
Public acute				
252	Heart Failure \& Shock	32,700	117	1.3
037	Cerebrovascular Disorders Except TIA W CC	13,378	106	1.2
249	Circ Disorders W AMI W/O Invasive Cardiac Inves Proc W/O Major CC	17,521	73	0.8
291	Coronary Bypass W/O Invasive Cardiac Inves Proc W/O Major CC	6,721	68	0.7
038	Cerebrovascular Disorders Except TIA W/O CC	11,804	65	0.7
297	Trans-Vascular Percutaneous Cardiac Intervention	8,719	46	0.5
270	Unstable Angina W/O CC	19,432	43	0.5
269	Unstable Angina W CC	12,074	37	0.4
274	Circ Dsr W/O AMI W Invas Card Inves Proc W/O Comp Dx \& W/O Maj C	21,252	37	0.4
273	Circ Dsr W/O AMI W Invas Card Inves Proc W Comp Dx or W Maj CC	9,867	36	0.4
Private acute				
291	Coronary Bypass W/O Invasive Cardiac Inves Proc W/O Major CC	3,576	29	1.1
252	Heart Failure \& Shock	6,594	21	0.7
274	Circ Dsr W/O AMI W Invas Card Inves Proc W/O Comp Dx \& W/O Maj C	15,925	19	0.7
297	Trans-Vascular Percutaneous Cardiac Intervention	5,135	19	0.7
239	Vein Ligation \& Stripping	9,941	16	0.6
288	Coronary Bypass W Invasive Card Inves Proc Age>64 or W N-Maj CC	1,217	13	0.5
037	Cerebrovascular Disorders Except TIA W CC	2,374	11	0.4
236	Cardiac Pacemaker Implantation	1,113	11	0.4
224	Cardiac Valve Proc W Pump W/O Invasive Card Inves Proc W/O Maj CC	846	10	0.4
230	Major Reconstruct Vascular Proc W/O Pump W/O CC	1,483	9	0.3

Notes: AMI—Acute myocardial infarction
Card-Cardiac
CC-Complications and Comorbidities
Circ-Circulatory
Comp-Complicated
Dsr—Disorder
Dx—Diagnosis
Invas-Invasive
Inves-Investigation
$\mathrm{N}-\mathrm{No}$
Proc-Procedure
TIA—Transient Ischaemic Attack
W-With
W/O-Without
Source: Australian Institute of Health and Welfare 1997a.

Medical labour force related to cardiovascular conditions

Introduction

Abstract

The Australian Institute of Health and Welfare conducts a survey on the medical labour force in Australia. The scope of the survey is to gather information on all medical practitioners registered with the Medical Board in each State and Territory who are eligible to practise. Each State and Territory Medical Board conducts an annual renewal of practitioner registration and, except for Western Australia, the survey questionnaire is sent to all medical practitioners as part of the registration process. In Western Australia, the first survey conducted by the Medical Board was in conjunction with the renewal of registration in 1996. Estimates based on the 1996 survey have been included to provide national aggregates (Australian Institute of Health and Welfare 1997b).

Uses of medical labour force data for monitoring medical care of cardiovascular conditions

Abstract

The Medical Labour Force Survey can be used to estimate the numbers of practitioners registered and working in the specialties of cardiology, cardiothoracic surgery and vascular surgery. However, it should be noted that not all procedures carried out by cardiothoracic, vascular and neurosurgeons would be for cardiovascular diseases or related conditions. Data on Medicare practitioners from the Department of Health and Family Services provides some information on the number of Medicare registered practitioners, and the number of services carried out in and out of hospital. It must again be noted that not all procedures carried out by the specialists listed would have been for cardiovascular conditions. Estimates of practitioner numbers from the Medical Labour Force Survey may differ from estimates from Medicare data, as Medicare statistics for specialists include non-specialists whose main income from Medicare is in a specialist field.

Number of medical practitioners and Medicare services in cardiovascular and related specialties

In 1995 there were an estimated 471 cardiologists, 84 cardiothoracic surgeons, 106 neurosurgeons and 122 vascular surgeons registered and practising in these fields as their main specialty. In addition there were an estimated 71 general practitioners mainly practising in cardiology (Australian Institute of Health and Welfare 1997b).
Medicare data, which does not cover services to public patients in public hospitals or outpatient services by public hospitals, indicate that 473 cardiologists provided 1,700,000 services in 1994-95, representing an average of 949 in hospital services and 2,646 out of
hospital services per cardiologist. An estimated 90 cardiothoracic surgeons provided 63,000 services, representing an average of 408 in hospital and 289 out of hospital services per practitioner. An estimated 119 practitioners performed 198,000 vascular procedures, representing 404 in hospital and 1,258 out of hospital procedures per practitioner (Table 59) (Australian Institute of Health and Welfare 1996c).

Table 59: Cardiovascular condition related Medicare providers and services, 1994-95

		Average number of services per practitioner		
Number of practitioners	Services ('000s)	In hospital	Out of hospital	
Cardiology	473	1,700	949	2,646
Cardiothoracic surgery	90	63	408	289
Neurosurgery	94	305	684	
Vascular surgery	119	198	404	1,258

[^17]
Appendix A

Definitions of data items in the Australian Bureau of Statistics' National Health Survey 1995

- Cardiovascular conditions - a generic term describing the following conditions of the circulatory system (Australian Bureau of Statistics 1997b): hypertension (high blood pressure), heart disease (including ischaemic heart disease, diseases of pulmonary circulation and heart failure), atherosclerosis (plaque lining the arteries); cerebrovascular disease (including stroke and its after effects), other circulatory diseases (including thrombosis, aneurysms and diseases of the capillaries), and ill-defined heart conditions such as irregular heart beat and palpitations. Varicose veins and haemorrhoids are excluded.
- Recent cardiovascular condition - estimated from the reported cardiovascular conditions experienced by the respondent in the two weeks prior to interview.
- Action - estimated from the reported actions taken for a recent cardiovascular condition. Actions taken included consultations with doctors and other health professionals, use of medications, admission to hospital as an inpatient (including same day patients), use of casualty (emergency) or outpatient services at a hospital, and visits to day clinics.
- Admitted to hospital - estimated from the reported admission as an inpatient for a period of one night or more, or for less than one night on a doctor's referral (such as day patients admitted for minor surgery, tests or other procedures) in the two weeks prior to interview, for a recent cardiovascular condition.
- Visited casualty/emergency or outpatients - estimated from the reported use of emergency, casualty and outpatient services at a hospital in the two weeks prior to interview for a recent cardiovascular condition.
- Visited day clinics - estimated from the reported visits to day clinics (as identified by the respondent) for minor surgery or diagnostic tests (excluding X-rays) for a recent cardiovascular condition.
- Doctor consultations - estimated from the reported consultation with a doctor in the two weeks prior to interview for a recent cardiovascular condition.
- Consultation with other health professional - estimated from the reported consultations with a health professional (excluding a doctor) in the two weeks prior to interview for a recent cardiovascular condition.
- All medication-estimated from the reported consumption or other use of any medications, pills or ointments during the two weeks prior to interview for a recent cardiovascular condition.
- Heart medication - estimated from the reported consumption or other use of medication for fluid, heart or blood pressure in the two weeks prior to interview for a recent cardiovascular condition.
- Days away from work or school - estimated from the reported normal work or school days (other than days in hospital) on which the respondent did not attend for all or most of the day. School days include days away from college, university, etc.
- Days of reduced activity - estimated from the reported days (other than days away from work or school) on which the respondent cut down on his/her usual activities.

Appendix B

Cardiovascular conditions included in estimates from the Australian Bureau of Statistics' National Health Survey 1995

Condition	ICD-9-CM code	ABS code
Hypertension		072
Essential hypertension	401	
Hypertensive heart disease	402	
Hypertensive renal disease	403	
Hypertensive heart and renal disease	404	
Secondary hypertension	405	
Heart disease		082
Rheumatic fever with heart involvement	391	
Diseases of mitral valve	394	
Other rheumatic heart disease	398	
Ischaemic heart disease	410-414	
Diseases of pulmonary circulation	415-417	
Acute pericarditis	420	
Acute and subacute endocarditis	421	
Acute myocarditis	422	
Other diseases of pericardium	423	
Other diseases of endocardium	424	
Cardiomyopathy	425	
Conduction disorders	426	
Cardiac dysrhythmias	427	
Heart failure	428	
III-defined descriptions and complications of heart disease	429	
Atherosclerosis	440	015
Cerebrovascular disease		219
Subarachnoid haemorrhage	430	
Intracerebral haemorrhage	431	
Other and unspecified intracranial haemorrhage	432	
Occlusion and stenosis of precerebral arteries	433	
Occlusion of cerebral arteries	434	
Transient cerebral ischaemia	435	
Acute, but ill-defined, cerebrovascular disease	436	
Other and ill-defined cerebrovascular disease	437	

Condition	ICD-9-CM code	ABS code
Stroke after effects		119
Late effects of cerebrovascular disease	438	019
Other diseases of the circulatory system		
Rheumatic fever without mention of heart		
involvement	490	
Aortic aneurysm	442	
Other aneurysm	443	
Other peripheral vascular disease	444	
Arterial embolism and thrombosis	446	447
Polyarteritis nodosa and allied conditions	448	
Other disorders of arteries and arterioles	451	
Disease of capillaries	452	
Phlebitis and thrombophlebitis	453	
Portal vein thrombosis	457	
Other venous embolism and thrombosis	458	
Noninfectious disorders of lymphatic channels	459	
Hypotension	745	
Other disorders of circulatory system	746	
Bulbus cordis anomalies and anomalies of cardiac	747	
septal closure	427,429	
Anomalies of pulmonary valve		
Other congenital anomalies of circulatory system	III-defined signs and symptoms of heart conditions	

Appendix C

Index of antithrombotic, lipid lowering and cardiovascular drugs by generic drug name

This index lists antithrombotic, lipid lowering and cardiovascular drugs by generic drug name. The Anatomical Therapeutic Chemical (ATC) code at the main group or therapeutic subgroup level is indicated in brackets.

Anticoagulants (B01AA, B01AB)

Vitamin K antagonists (B01AA)

Phenindione
Warfarin
Heparin group (B01AB)
Dalteparin
Enoxaparin
Heparin
Heparin calcium
Heparin sodium
Heparin sodium LMW
Heparinised saline
Tinzparin

Antiplatelet drugs (B01AC)

Aspirin
Dipyridamole
Ticlopidine hydrochloride
Thrombolytic drugs (B01AD)

Serum lipid lowering drugs

 (B04)Statins (HMG COA reductase inhibitors) (B04AB)

Pravastatin
Simvastatin
Fibrates (B04AC)
Clofibrate
Gemfibrozil
Resin binders (bile sequestrants)
(B04AD)
Cholestyramine
Colestipol hydrochloride
Other lipid lowering drugs (B04AE, B04AX)

Nicotinic acid and derivatives (B04AE)
Nicotinic acid

Other cholesterol and triglyceride reducers (B04AX)

Probucol

[^18]
Inotropic drugs (C01A, C01C)

Cardiac glycosides (C01A)

Digoxin
Proscillaridin

Cardiac stimulants excluding

 cardiac glycosides (C01C)Dobutamine hydrochloride
Dopamine hydrochloride
Metaraminol

Antiarrhythmics (C01B)

Amiodarone hydrochloride
Bretylium tosylate
Disopyramide
Flecainide acetate
Lignocaine hydrochloride
Mexiletine hydrochloride
Procainamide hydrochloride
Quinidine

Nitrates (antianginal vasodilators) (C01D)

Glyceryl trinitrate Isosorbide dinitrate
Isosorbide mononitrate
Pentaerythritol tetranitrate

Diuretics (C03)

Thiazides (C03A)
Bendrofluazide
Chlorothiazide
Cyclopenthiazide
Hydrochlorothiazide
Methyclothiazide

Low ceiling diuretics excluding

 thiazides (C03B)Chlorthalidone
Clopamide
Indapamide
Mefruside
Metolazone
Quinethazone

High ceiling diuretics excluding thiazides (C03C)

Bumetanide
Ethacrynic acid
Frusemide

Potassium sparing agents (C03D)

Amiloride hydrochloride
Spironolactone
Triamterene
Low ceiling diuretics and potassium sparing agents in combination (C03E)

Hydrochlorothiazide with amiloride hydrochloride
Hydrochlorothiazide with triamterene

Beta blockers (C07)

Alprenolol hydrochloride
Atenolol
Atenolol with chlothalidone
Labetalol hydrochloride
Metoprolol tartrate
Oxprenolol hydrochloride
Penbutolol
Pindolol
Pindolol with clopamide
Propranolol hydrochloride
Sotalol hydrochloride
Timolol maleate

Calcium channel blockers (C08)

Amlodipine besylate
Diltiazem hydrochloride
Felodipine
Nifedipine
Perhexiline maleate
Verapamil hydrocholride

ACE inhibitors (C09)

Captopril
Enalapril maleate
Fosinopril
Fosinopril sodium
Lisinopril
Perindopril
Quinapril
Ramipril
Trandolapril

Other antihypertensives (C02A, C02C, C02D)

Centrally acting antiadrenergic

 agents (C02A)Clonidine
Methyldopa
Rauwolfia serpentina

Peripherally acting antiadrenergic agents (C02C)

Debrisoquine
Labetol hydrochloride
Prazosin hydrochloride
Terazosin

Agents acting on arteriolar smooth muscle (C02D)

Diazoxide
Hydralazine hydrochloride
Minoxidil
Sodium nitroprusside

Peripheral vasodilators (C04)

Betahistine
Isoxuprine
Nicotinic acid
Oxpentifylline
Phenoxybenzamine hydrochloride
Phentolamine mesylate

Appendix D

The classification of cardiovascular disease under the International Classification of Primary Care

The International Classification of Primary Care (ICPC) is a widely tested, comprehensive classification system designed for use by primary care providers (Lamberts \& Wood 1987). The ICPC allows for the classification of a patient's reason for encounter, the provider's assessment/diagnosis, and the process of care/intervention undertaken by the provider. The structure of the ICPC includes 17 chapters, nearly all of which are based on body systems, each with seven identical components.
The 17 chapters are:
A General and unspecified
B Blood and blood-forming organs and lymphatics (spleen, bone marrow)
D Digestive
F Eye
H Ear
K Circulatory (referred to in this report as Cardiovascular)
L Musculoskeletal
N Neurological
P Psychological
R Respiratory
S Skin
T Endocrine, metabolic and nutritional
U Urological
W Pregnancy, child bearing, family planning
X Female genital (including breast)
Y Male genital
Z Social problems.
The seven components within each chapter are:

1. Symptoms and complaints;
2. Diagnostic and preventive procedures;
3. Medication, treatment, and therapeutic procedures;
4. Results;
5. Administrative;
6. Referral and other reasons for encounter; and
7. Diagnoses.

The first and seventh components of the ICPC can be converted to the Ninth Revision of the International Classification of Disease (ICD-9-CM), however conversion on a one-to-one basis is not always possible. Lamberts and Wood (1987) include a conversion of ICPC to ICD-9-CM.
The ICPC codes for cardiovascular conditions are:

K-Circulatory

Component 1-Symptoms and complaints

ICPC code	ICPC Description
K01	Pain attributed to heart
K02	Pressure, tightness, heaviness attributed to heart (excl. R02—shortness of breath, dyspnoea)
K03	Other pain attributed to circulatory system
K04	Palpitations/awareness of heartbeats
K05	Other abnormal/irregular heartbeat/pulse
K06	Prominent veins
K07	Swollen ankles/oedema
K24	Fear of heart attack
K25	Fear of hypertension (excl. known hypertension)
K27	Fear of other disease of the circulatory system
K28	Disability/impairment
K29	Other symptoms/complications of the heart/circulatory system (excl. R93—fluid in chest)

Component 7-Diagnosis/diseases

ICPC code	ICPC Description
K70	Infectious disease of the circulatory system
K71	Acute rheumatic fever/ chronic rheumatic heart disease
K72	Neoplasm of the circulatory system
K73	Congenital anomalies of the heart/circulatory system
K74	Angina pectoris
K75	Acute myocardial infarction
K76	Other and chronic coronary heart disease
K77	Heart failure
K78	Atrial fibrillation/flutter
K79	Paroxysmal tachycardia
K80	Ectopic beats, all types
K81	Heart murmur, not otherwise specified
K82	Pulmonary heart disease
K83	Heart valve disease not otherwise specified, non-rheumatic
K84	Other disease of the heart
K85	Elevated blood pressure without hypertension
K86	Uncomplicated hypertension
K87	Hypertension with involvement of target organs the circulatory system
K88	Postural hypotension (low blood pressure)
K89	Transient cerebral ischaemia
K90	Stroke/cerebrovascular accident
K91	Atherosclerosis (excl. heart/brain)
K92	Other arterial obstruction/peripheral vascular disease
K93	Palmonary embolism

Appendix E

Survey of Morbidity and Treatment in General Practice in Australia 1990-91-list of treatments other than prescriptions

Therapeutic procedures

Repair/immobilise

Close laceration
Remove sutures
Treat fracture/dislocation
Cast removal
Alter/aerate/cut hole in plaster
Immobilise soft tissue (splint)
Cast
Sling
Cervical collar
Bandage/strap
Repair/immobilise not elsewhere classified
Treatment to stop expansion (e.g. ice)

Excise, incise, aspirate

Excise lesion (removal of moles, growths etc.)
Circumcision
Aspirate joint
Aspirate cyst
Incise/drain (including remove earwick; puncture ganglion)
Enema
Excise/remove not elsewhere classified
Remove foreign body (e.g. splinter)

Destroy, cauterise

Chemical cautery
Cryotherapy (use of nitrogen oxide - warts)

Electrocautery (diathermy)
Destroy vein
Destroy, cauterise not elsewhere classified

Injection not otherwise specified

Medication not otherwise specified (e.g. gargles)
IV fluids/infusion
Local anaesthetic

Press, compress, dilate

Bandage/dressing (e.g. clean wounds)
Compression
Compress/support
Press/compress/dilate not elsewhere classified (e.g. heel pillow)
Incontinence pads

Physical therapies

Exercise
Thermal hydrotherapy
Steam inhalation
Manipulation
Massage
Acupuncture
Laser
Ultrasound
Microwave/shortwave
Electrical stimulation
Physical aid (e.g. walking frame, stick)
Physical therapy not elsewhere classified

Urogenital procedure

Endometrial biopsy
D\&C
Tubal ligation
Vasectomy
Insert diaphragm
Insert IUD
Remove IUD
Remove and insert IUD

Urogenital procedure not elsewhere classified
Urinary catheter

Obstetric procedure

Normal delivery
Low forceps delivery
Abnormal vaginal delivery
Complicated vaginal delivery
Caesarean section
Induce labour
Perineal repair
Post partum procedure
Delivery not otherwise specified
Obstetric procedure not otherwise specified

Miscellaneous procedure

Order rest
Time off work (e.g. work certificate)
Observe/wait
Remove ear wax
Pierce ears
Anaesthetic given (assisting at operation)
Transfusion
Other procedure (e.g. oxygen)
Procedure not elsewhere classified

Clinical treatments

Counselling—psychological

Counselling-individual
Psychological testing
Counsel-life stage
Bereavement counselling
Marriage counselling
Hypnosis
Relaxation therapy
Psychotherapy
Counsel, other

Counselling—health

Counsel—nutrition/weight
Counsel-smoking
Counsel-alcohol
Counsel - drug abuse (including legal drugs)
Counsel-occupational risk
Counsel-exercise
Counsel-relaxation
Counsel-environment
Counsel - health not elsewhere classified (including multiples of above)
Life style
Prevention

Counsel-sex, pregnancy

Family planning
Sexual counselling
Pre-pregnancy
Counselling - pregnancy
Counselling-genetic
Counselling - sex, pregnancy not elsewhere classified

Advice/education (not elsewhere classified)

Advice not otherwise specified
Treatment advice (go to bed, take panadol when needed, clear fluids)
Advice about body
Advice - care of sick third person (e.g. elderly person/ prevention)
Advice - care of well person/mother care
Change drug dosage
Increase dosage
Decrease dosage
Stop medication
Recommend medication (not new script)
Advise how to take drugs etc.
Review dosage
Legal advice (e.g. workers' compensation, child welfare)
Recommend/advise naturopathic medication

Reassurance, support

Appendix F

Survey of Morbidity and Treatment in General Practice in Australia 1990-91—list of generic cardiovascular drugs and diuretics

Antihypertensive agents

Clonidine
Guanethidine
Hydralazine
Prazosin hydrochloride
Methyldopa
Debrisoquine
Reserpine
Rauwolfia
Captopril
Minoxidil
Felodipine
Enalapril maleate
Verapamil
Raudinex
Natrilix

Antiarrhythmic agents

Quinidine bisulphate
Procainamide
Rythmodan
Mexiletine
Flecainide acetate
Amioderone hydrochloride
Lignocaine injection
Sotalol

Antiangina agents

Glyceryl trinitrate
Sorbide nitrate
Peritrate
Glyceryl trinitrate ointment
Nifedipine
Diltiazem

Cardiac glycosides

Digoxin
Lanatoside-C

Beta blockers

Oxprenolol
Pindolol
Propranolol
Atenolol
Metoprolol
Vimolol
Labetalol
Alprenolol
Adrenergenic stimulants
Hydergine
Adrenaline injection

Peripheral vasodilators

Betahistine
Nicotinic acid
Phenoxybenzamine
Nicotinyl alcohol

Antimigraine drugs

Pizotifen
Dixarit
Ergalan
Ergot caffeine cyclizine
Ergotam tartrate
Ergotamine + caffeine
Methysergide
Ergodryl
Nicotinic alcohol

Other cardiovascular drugs
Dipyridamole
Paroven
Probucol
Colestipol hydrochloride
Simvastatin
Oxpentifylline
Lopid
Streptokinase

Diuretics

Amiloride
Chlorothiazide
Cyclopenthiazide
Frusemide
Hydrochlorothiazide
Thiazide + amiloride
Methyclothiazide
Bendrofluazide
Chlorthalidone
Clopamide
Triamterene
Quinethazone
Spironolactone
Mefruside
Ethacrynic acid
Bumetanide
Metolazone
Desmopressin

Appendix G

Medicare Benefits Schedule-cardiovascular medical services

The following provides detailed information from the Medicare Benefits Schedule (effective 1 November 1995) for the groups of cardiovascular medical services included in this report.

Diagnostic procedures and investigations

Type of service	Medicare item number
Cardiovascular diagnostic procedures and investigations	
Twelve-lead electrocardiography	11700-11702
Phonocardiography	11706
Continuous ECG recording	11708-11709
Ambulatory ECG monitoring	11710-11711
Multi channel ECG monitoring and recording	11712
Signal averaged ECG recording	11713
Blood dye-dilution indicator test	11715
Implanted pacemaker testing	11718, 11721
Therapeutic procedures-vascular	
Artery of neck, bypass	32700
Internal carotid artery, transection and reanastomosis of, or resection of small length and reanastomosis of	32703
Internal carotid artery, reoperation for recurrent stenosis	32706
Aorto-iliac or aorto-femoral grafting	32709
llio-femoral bypass grafting	32712
Renal arteries (both), bypass grafting to	32724
Mesenteric vessel (single), bypass grafting to	32730
Mesenteric vessel (multiple), bypass grafting to	32733
Inferior mesenteric artery, operation on	32736
Femoral artery bypass grafting	32739-32754
Femoral artery sequential bypass grafting	32757
Harvesting of vein from leg or arm	32760
Arterial bypass grafting	32763
Arterial or venous anastomosis	32766, 32769
Aneurysm of common or internal carotid artery, or both, replacement by graft	33100
Thoracic aneurysm, replacement by graft	33103
Artery or vein bypass graft	33106
Thoraco-abdominal aneurysm, replacement by graft	33109
Suprarenal abdominal aortic aneurysm, replacement by graft	33112

Type of service	Medicare item number
Infrarenal abdominal aortic aneurysm, replacement by graft	33115, 33118, 33121
Aneurysm of iliac artery, replacement by graft	33124
Aneurysm of iliac arteries, replacement by graft	33127
Aneurysm of visceral artery, excision and repair	33130
False aneurysm, repair of	33136, 33139, 33142
Ruptured thoracic aortic aneurysm, replacement by graft	33145
Ruptured thoraco-abdominal aortic aneurysm, replacement by graft	33148
Ruptured suprarenal abdominal aortic aneurysm, replacement by graft	33151
Ruptured infrarenal abdominal aortic aneurysm, replacement by graft	33154, 33157, 33160
Ruptured iliac artery aneurysm, replacement by graft	33163
Ruptured aneurysm of visceral artery, replacement by anastomosis or graft	33166
Ruptured aneurysm of visceral artery, simple ligation of	33169
Aneurysm of major artery, replacement by graft	33172
Artery or arteries of neck, endarterectomy of	33500
Internal carotid artery, reoperation	33503
Innominate or subclavian artery, endarterectomy of	33506
Aortic endarterectomy	33512
Aorto-femoral endarterectomy	33515
lliac endarterectomy	33518
llio-femoral endarterectomy	33521
Renal artery, endarterectomy of	33524
Renal arteries, endarterectomy of	33527
Coeliac or superior mesenteric artery, endarterectomy of	33530
Inferior mesenteric artery, endarterectomy of	33536
Artery of extremities, endarterectomy of	33539
Extended deep femoral endarterectomy	33542
Artery or vein, patch grafting to	33545, 33548
Vein harvesting of	33551
Endarterectomy in conjunction with an arterial bypass operation	33554
Embolus, removal of, from artery of neck	33800
Embolectomy or thrombectomy	33803, 33806
Inferior vena cave or iliac vein, thrombectomy of	33809
Thrombus, removal of	33812
Major artery or vein of extremity, repair of wound of	33815, 33818, 33821
Major artery or vein of neck, repair of wound of	33824, 33827, 33830
Major artery or vein of abdomen, repair of wound of	33833, 33836, 33839
Artery of neck, re-operation for bleeding or thrombosis after carotid or vertebral artery surgery	33842
Laparotomy, for control of post operative bleeding or thrombosis after vascular procedure	33845
Extremity, reoperation on	33848
Transluminal balloon angioplasty of 1 peripheral artery or vein of 1 limb	35300
Transluminal balloon angioplasty of aortic arch branches, aortic visceral branches, or more than 1 peripheral artery or vein of 1 limb	35303

Type of service	Medicare item number
Transluminal balloon angioplasty of 1 coronary artery	35304
Transluminal balloon angioplasty of more than 1 coronary artery	35305
Transluminal stent insertion including associated balloon dilation for 1 peripheral artery or vein of 1 limb	35306
Transluminal stent insertion including associated balloon dilation for visceral arteries or veins, or more than 1 peripheral artery or vein of 1 limb	35309
Transluminal stent insertion including associated balloon dilation for coronary artery	35310
Therapeutic procedures-cardiothoracic	
Right heart catheterisation	38200
Left heart catheterisation	38203
Right heart catheterisation with left heart catheterisation	38206
Cardiac electrophysiological study	38209, 38212
Selective coronary arteriography—placement of catheters and injection of opaque material	38215
Selective coronary arteriography_placement of catheters and injection of opaque material with right or left catheterisation, or both	38218
Single chamber permanent transvenous electrode, insertion of	38250
Permanent pacemaker, insertion or replacement of	38253
Temporary transvenous pacemaker electrode, insertion of	38256
Permanent dual chamber transvenous electrodes, insertion of	38259
Permanent myocardial electrode, insertion of	38470
Permanent pacemaker electrode	38473
Valve repair, 1 leaflet	38380
Valve repair, 2 or more leaflets	38381
Aortic valve leaflet or leaflets, decalcification of	38483
Mitral valve, open valvotomy of	38487
Valve replacement with bioprosthesis or mechanical prosthesis	38488
Valve replacement with allograft, or unstented xenograft	38489
Coronary artery bypass using saphenous vein graft or grafts only	38497
Coronary artery bypass using single arterial graft, with or without vein graft or grafts	38500
Coronary artery bypass using 2 or more arterial grafts, with or without vein graft or grafts	38503
Congenital cardiac surgery	
Patent ductus arteriosis, shunt, colateral or other single large vessel, division or ligation of	38700, 38703
Aorta, anastomosis or repair of	38706, 38709
Aortic interruption, repair of	38712
Main pulmonary artery, banding, debanding or repair of	38715, 38718
Vena cava, anastomosis or repair of	38721, 38724
Intrathoracic vessels, anastomosis or repair of	38727, 38730
Systemic pulmonary or cavo-pulmonary shunt, creation of	38733, 38736
Atrial septectomy	38739
Atrial septal defect	38742
Intra-atrial baffle, insertion of	38745
Ventricular septectomy	38748
Ventricular septal defect, closure	38751

Type of service	Medicare item number
Intraventricular baffle or conduit, insertion of	38754
Extracardiac conduit, insertion of	38757
Extracardiac conduit, replacement of	38760
Ventricular myectomy	38763
Ventricular augmentation	38766
Therapeutic procedures-neurosurgical-cerebrovascular disease	
Aneurysm, clipping of reinforcement of sac	39800
Intracranial arteriovenous malformation, excision of	39803
Aneurysm, or arteriovenous malformation, intracranial proximal artery clipping of	39806
Intracranial aneurysm or arteriovenous fistula, ligation of cervical vessel or vessels	39812
Carotid-cavernous fistula, obliteration of	39815
Extracranial to intracranial bypass using superficial temporal artery	39818
Extracranial to intracranial bypass using saphenous vein graft	39821
Diagnostic imaging	
M-mode and 2-dimensional real time echocardiographic examination of the heart	55102, 55105, 55112
Heart, 2-dimensional real time transoesophageal examination of	55118
Intra-operative 2-dimensional real time transoesophageal echocardiography	55130
Duplex scanning of carotid or peripheral vessels	55201-55237
Serial angiocardiography	59900, 59903, 59906
Selective coronary arteriography	59912
Cerebral angiography	59915
Arteriography, peripheral	59918
Aortography	59921
Selective arteriography	59924
Digital subtraction angiography, examination of head and neck	60000-60009
Digital subtraction angiography, examination of thorax	60012-60021
Digital subtraction angiography, examination of abdomen	60024-60033
Digital subtraction angiography, examination of upper limb or limbs	60036-60045
Digital subtraction angiography, examination of lower limb or limbs	60048-60057
Digital subtraction angiography, examination of aorta and lower limb or limbs	60060-60069
Selective arteriography or selective venography	60072, 60075, 60078
Myocardial perfusion study using thallium	$\begin{array}{r} 61300,61301,61304, \\ 61305 \end{array}$
Myocardial infarct-avid imaging study	61308, 61309
Gated cardiac blood pool study	61312, 61315
Cardiac first pass blood flow study, cardiac shunt study, or cardiac output study	61322, 61323

[^19]
Appendix H

Summary of the Disease Costs and Impact Study methodologies

A summary of the methodologies used in the Disease Costs and Impact Study is provided below. This information has come directly from the report Health System Costs of Cardiovascular Diseases and Diabetes in Australia 1993-94 by Mathers et al. (in preparation), in which detailed information about the methodologies used to estimate health care costs in 1993-94 can be found.
The basic approach for direct costs of health services has been to take known aggregate expenditures on health care and apportion those to disease categories using Australian data (hospital morbidity data, casemix data, the national survey of morbidity and treatment in general practice, and the National Health Survey). The attribution of the direct costs of health services to disease is discussed in more detail below.
It must be emphasised that the cost estimates for 1993-94 are based on attribution of total health expenditures to diseases based on available information on the mix of diseases treated and the costs of treatment. For medical and allied health services, and to some extent for drugs, utilisation data relate to 1989-90 or 1990-91 and so costs reported for these sectors will not reflect changes in clinical practice or disease patterns between then and 1993-94. Also, costs of specialist medical services are estimated using 1990-91 data on referral patterns by GPs and costed at the average cost within specialist type. For example, this means that all pathology tests are assumed to have the same average cost.
Although the cost estimates reported here provide a broad picture of the health system resources used by age, sex and disease, they should be interpreted with caution for specific diseases. Detailed bottom-up costing of the treatment costs of a specific disease may give more accurate estimates than the top-down approach of the DCIS but the latter ensures consistency of estimates, complete coverage of all diseases, and ensures that cost estimates for individual diseases and age-sex groups add to the known total health expenditures.
Recurrent expenditure on health care which has not yet been attributed includes ambulance services, community health services, health promotion and illness prevention, and aids and appliances. Other types of direct cost, not yet attributed to disease categories, are capital expenditure ($\$ 1.5$ billion in 1989-90), together with costs not counted within the National Accounts context. These include costs incurred by families and friends in caring for patients, travel costs of patients and welfare service costs. The current estimates of direct costs are therefore conservative.

Hospital admitted patient services

This sector includes admitted patient costs for recognised public hospitals (including public psychiatric hospitals), Repatriation (Veterans') hospitals and private hospitals. The proportions of total public acute hospital expenditure which relate to admitted patients are given by the admitted patient fractions estimated for each State and Territory by the National Health Ministers Benchmarking Working Group (1996).

Disease costs for admitted patient services are estimated by apportioning the total admitted patient expenditure for each State or Territory to individual episodes of hospitalisation with an adjustment for resource intensity of treatment for the specific episode (using Diagnostic Related Groups or DRGs). Medical costs for private, compensable and other non-public patients in public, Repatriation and private hospitals are estimated using DRG-derived medical cost weights and age-sex specific information from the Health Insurance Commission on in hospital private medical charges for various categories of service.

Outpatient and casualty services

The 1989-90 ABS National Health Survey is used to allocate total expenditure on nonadmitted patient services for 1993-94. Total visits to outpatient clinics (including casualty or accident and emergency departments) for each age-sex-disease group are estimated from the National Health Survey data on numbers of outpatient visits in the two weeks prior to interview. Expenditure is allocated assuming that all visits have the same cost.

Nursing homes

The distribution of main disabling health condition of nursing home residents in the 1993 Australian Survey of Disability, Ageing and Carers is used to allocate total nursing home expenditure for 1993-94 to age-sex-disease categories at ICD-9 chapter level. This expenditure is apportioned to specific disease groups at the sub-Chapter level according to the distribution of diagnosis for patients in that age-sex group who transfer from acute hospitals (around 60% of nursing home admissions).

Medical services

This sector includes expenditure on all private medical services apart from those to hospital admitted patients. It includes consultations with general practitioners and specialists as well as pathology tests and screening and diagnostic imaging services. The Survey of Morbidity and Treatment in General Practice in Australia 1990-91 is used to allocate age-sex specific out of hospital expenditure on medical services to disease diagnoses. This allocation is done separately for general practitioners (based on encounters surveyed in the Bridges-Webb survey) and for 17 categories of specialists (based on the pattern of referrals to each category of specialist in the Bridges-Webb survey).
Age-sex specific out of hospital expenditure on medical services is derived from Medicare and Department of Veterans' Affairs (DVA) data. This expenditure covers all charges for which a Medicare or DVA claim has been made. It is adjusted to include expenditure for which claims have not been made using an inflation factor derived from the Australian Institute of Health \& Welfare health expenditure data on total expenditure on medical services.
This methodology assumes that the pattern of GP services by diagnosis in 1993-94 is the same as that collected in 1990-91, that the pattern of diseases managed by each type of specialist in 1993-94 reflects the pattern of referrals to that specialist type from GPs in 1990-91 and that each referral to a specialist of a given type generates services with equal cost.

All other screening and diagnostic tests were costed based on the 1990-91 pattern of referrals by GPs using the overall average charge per pathology test in 1993-94.

Allied health services

The 1990-91 Survey of Morbidity and Treatment in General Practice in Australia and the 1989-90 ABS National Health Survey are used to allocate total Australian expenditure on allied health practitioners to age-sex-disease groups. Total visits to allied health practitioners in 1993-94 for each age-sex-disease group are estimated from the National Health Survey data on visits to 14 types of allied health practitioners in the two weeks prior to interview. Annual visits to other types of allied health practitioner are estimated from referrals by GPs in the Bridges-Webb survey. Expenditure is allocated assuming that all visits have the same cost. The methodology covers all allied health professionals except pharmacists (see below).

Pharmaceuticals

Total pharmaceutical expenditure is decomposed into two components: expenditures on prescription drugs and non-prescription (over the counter) pharmaceuticals. The 1990-91 Survey of Morbidity and Treatment in General Practice in Australia together with 1993-94 estimates of total costs and numbers of prescriptions for 40 categories of drug are used to allocate total Australian expenditure on prescription pharmaceuticals to age-sex-disease groups. Expenditure on over the counter pharmaceuticals is attributed to disease-age-sex groups using information from the 1989-90 ABS National Health Survey. The methodology addresses all pharmaceutical costs apart from the cost of pharmaceuticals dispensed in hospitals, which are included in estimates of hospital costs.
For each of 40 therapeutic drug groups, the relative distribution of prescriptions by disease, age and sex for all community prescriptions in 1993-94 is assumed to be the same as that for prescriptions by general practitioners in 1990-91. For diseases where a significant proportion of prescriptions are made by medical specialists, this assumption may have limited validity. Detailed estimates of 1993-94 utilisation and expenditure for the 40 drug categories are used as a starting point for attribution to disease-age-sex groups. This takes into account differences in average drug costs across therapeutic categories, average numbers of repeats and relative changes in utilisation and costs across drug categories between 1989-90 and 1993-94.

Public health programs

Community and public health programs in general are not yet included in the estimates of disease costs due to the difficulties in obtaining comprehensive casemix data for these health sectors.

Research

Estimated total Australian expenditure on health and medical research for major disease and population groups in 1991 was used to estimate total research spending for males and females by chapter of ICD-9. Chapter level expenditure was allocated to disease-age-sex groups at sub-Chapter level in proportion to total health expenditure for other health sectors.

Other institutional, non-institutional and administration

Other institutional health expenditure (the Red Cross Blood Transfusion Service), other noninstitutional health expenditure and administration expenditure (Commonwealth, State and

Territory health authority administration expenses and management expenses of Medicare and registered private health insurance funds) are allocated to disease-sex-age groups in proportion to total health expenditure for other health sectors.
It may be possible to refine this attribution process through analysis of the types of expenditure comprising these categories. For example, almost half of 'Administration' expenditure is for administration of health insurance funds, and it may be possible to allocate this according to the distribution across sectors of health insurance funds expenditure. At this stage, a simple overall pro rata allocation process has been used for the three sectors combined.

Supplementary tables

Survey of Morbidity and Treatment in General Practice in Australia 1990-91

Table S1: Distribution of all problems managed and all patient encounters ${ }^{(a)}$ by sex and age, 1990-91

Sex/ age group (years)	Number of problems managed	Number of patient encounters	Problems managed per 100 encounters for sex and age group	
			Rate	Standard error of rate
Males				
< 1	1,434	1,159	123.8	1.30
1-4	3,422	2,808	121.9	0.81
5-14	4,837	3,991	121.2	0.67
15-24	5,114	4,134	123.7	0.72
25-44	12,362	9,367	132.0	0.56
45-64	14,293	9,339	153.0	0.73
65-74	9,904	5,822	170.1	1.05
75+	6,415	3,725	172.2	1.31
Unknown	514	357	143.9	3.28
Tntal ${ }^{\text {(b) }}$	58,295	40,702	143.2	0.32
Females				
< 1	1,235	993	124.4	1.43
1-4	2,990	2,464	121.4	0.82
5-14	4,586	3,794	120.9	0.68
15-24	8,449	6,445	131.1	0.65
25-44	21,657	15,559	139.2	0.48
45-64	19,993	12,312	162.4	0.68
65-74	12,677	7,241	175.1	0.95
75+	12,444	6,986	178.1	0.99
Unknown	729	492	148.4	3.03
Tntal (b)	84,760	56,286	150.6	0.29
Persenc ${ }^{(c)}$				
< 1	2,805	2,262	124.0	0.94
1-4	6,629	5,458	121.5	0.57
5-14	9,602	7,933	121.0	0.47
15-24	13,724	10,713	128.1	0.49
25-44	34,482	25,266	136.5	0.37
45-64	34,700	21,920	158.3	0.49
65-74	22,897	13,248	172.8	0.70
75+	19,187	10,907	175.9	0.78
Unknown	1,619	1,084	149.4	2.05
Total ${ }^{(b)}$	145,645	98,789	147.4	0.21

(a) Number of encounters where at least one problem was managed.
(b) Components may not add to totals due to rounding.
(c) Includes 2,590 problems managed and 1,804 encounters for which sex unknown.

Source: AIHW derived from the Survey of Morbidity and Treatment in General Practice in Australia 1990-91.

Table S2: Distribution of problems managed and patient encounters ${ }^{(a)}$ for all cardiovascular conditions by sex and age, 1990-91

Sex/ age group (years)	Number of problems managed	Number of patient encounters	Proportion of all problems managed for sex and age group		Problems managed per 100 encounters for sex and age group	
			Per cent	Standard error per cent	Rate	Standard error of rate
Males						
< 1	5	5	0.3	0.14	0.4	0.17
1-4	12	12	0.3	0.09	0.4	0.11
5-14	22	22	0.5	0.09	0.6	0.11
15-24	77	73	1.5	0.16	1.9	0.20
25-44	752	730	6.1	0.20	8.0	0.27
45-64	2,579	2,387	18.0	0.30	27.6	0.48
65-74	2,457	2,138	24.8	0.41	42.2	0.75
75+	1,657	1,444	25.8	0.52	44.5	0.95
Unknown	71	62	13.8	1.39	19.8	2.19
Total ${ }^{(b)}$	7,632	6,873	13.1	0.08	18.7	0.20
Females						
< 1	4	4	0.3	0.15	0.4	0.18
1-4	13	12	0.4	0.11	0.5	0.14
5-14	21	21	0.4	0.09	0.5	0.11
15-24	94	92	1.1	0.10	1.5	0.14
25-44	809	791	3.7	0.12	5.2	0.17
45-64	2,852	2,700	14.3	0.23	23.2	0.38
65-74	2,972	2,702	23.4	0.36	41.1	0.63
75+	3,406	2,935	27.4	0.38	48.8	0.72
Unknown	83	77	11.4	1.09	16.9	1.70
Total ${ }^{(b)}$	10,254	9,334	12.1	0.10	18.2	0.17
Persons ${ }^{(c)}$						
< 1	12	12	0.4	0.11	0.5	0.14
1-4	24	23	0.4	0.07	0.4	0.09
5-14	44	44	0.5	0.06	0.5	0.08
15-24	178	171	1.3	0.09	1.7	0.12
25-44	1,589	1,549	4.6	0.10	6.3	0.15
45-64	5,495	5,146	15.8	0.18	25.1	0.30
65-74	5,505	4,905	24.0	0.27	41.6	0.48
75+	5,147	4,455	26.8	0.31	47.2	0.57
Unknown	201	183	12.4	0.75	18.5	1.20
Total ${ }^{(b)}$	18,195	16,488	12.5	0.08	18.4	0.13

(a) Number of encounters where at least one problem was managed.
(b) Components may not add to totals due to rounding.
(c) Estimates include 309 problems managed and 280 encounters for which sex unknown.

Source: AIHW derived from the Survey of Morbidity and Treatment in General Practice in Australia 1990-91.

Table S3: Distribution of problems managed for hypertension by sex and age, 1990-91

Sex/ age group (years)	Number of problems managed	Proportion of all problems managed for sex and age group		Problems managed per 100 encounters for sex and age group	
		Per cent	Standard error per cent	Rate	Standard error of rate
Males					
<1	0	0.0	0.00	0.0	0.00
1-4	0	0.0	0.00	0.0	0.00
5-14	0	0.0	0.00	0.0	0.00
15-24	21	0.4	0.08	0.5	0.10
25-44	405	3.3	0.15	4.3	0.19
45-64	1,474	10.3	0.24	15.8	0.35
65-74	1,144	11.5	0.31	19.6	0.50
75+	545	8.5	0.33	14.6	0.55
Unknown	26	5.1	0.89	7.3	1.26
Total ${ }^{(a)}$	3,615	6.2	0.09	8.9	0.13
Females					
< 1	1	0.1	0.07	0.1	0.09
1-4	1	<0.1	0.03	<0.1	0.04
5-14	5	0.1	0.04	0.1	0.05
15-24	32	0.4	0.06	0.5	0.08
25-44	371	1.7	0.08	2.4	0.11
45-64	1,899	9.5	0.20	15.4	0.31
65-74	1,764	13.9	0.29	24.4	0.48
75+	1,482	11.9	0.28	21.2	0.47
Unknown	41	5.6	0.79	8.4	1.16
Total ${ }^{(a)}$	5,596	6.6	0.08	9.9	0.12
$\text { Persons }{ }^{(b)}$					
< 1	1	<0.1	0.03	<0.1	0.04
1-4	1	<0.1	0.01	<0.1	0.02
5-14	5	0.1	0.02	0.1	0.03
15-24	56	0.4	0.05	0.5	0.06
25-44	790	2.3	0.07	3.1	0.10
45-64	3,407	9.8	0.15	15.5	0.23
65-74	2,944	12.9	0.21	22.2	0.34
75+	2,056	10.7	0.21	18.6	0.36
Unknown	92	5.7	0.53	8.4	0.78
Total ${ }^{(a)}$	9,352	6.4	0.06	9.5	0.09

(a) Components may not add to totals due to rounding.
(b) Estimates include 140 problems managed for which sex unknown.

Source: AIHW derived from the Survey of Morbidity and Treatment in General Practice in Australia 1990-91.

Table S4: Distribution of problems managed for heart failure by sex and age, 1990-91

Sex/ age group (years)	Number of problems managed	Proportion of all problems managed for sex and age group		Problems managed per 100 encounters for sex and age group	
		Per cent	Standard error per cent	Rate	Standard error of rate
Males					
<1	0	0.0	0.00	0.0	0.00
1-4	0	0.0	0.00	0.0	0.00
5-14	1	< 0.1	0.02	<0.1	0.02
15-24	0	0.0	0.00	0.0	0.00
25-44	4	< 0.1	0.01	<0.1	0.02
45-64	73	0.5	0.06	0.8	0.09
65-74	215	2.2	0.14	3.7	0.24
75+	323	5.0	0.26	8.7	0.44
Unknown	12	2.3	0.62	3.4	0.88
Total ${ }^{(a)}$	628	1.1	0.04	1.5	0.06
Females					
< 1	0	0.0	0.00	0.0	0.00
1-4	0	0.0	0.00	0.0	0.00
5-14	1	<0.1	0.02	<0.1	0.02
15-24	0	0.0	0.00	0.0	0.00
25-44	5	< 0.1	0.01	< 0.1	0.01
45-64	64	0.3	0.04	0.5	0.06
65-74	207	1.6	0.11	2.9	0.19
75+	672	5.4	0.19	9.6	0.34
Unknown	9	1.2	0.38	1.8	0.56
Total ${ }^{(a)}$	958	1.1	0.03	1.7	0.05
$\text { Persons }{ }^{(b)}$					
< 1	0	0.0	0.00	0.0	0.00
1-4	0	0.0	0.00	0.0	0.00
5-14	2	<0.1	0.01	<0.1	0.02
15-24	0	0.0	0.00	0.0	0.00
25-44	8	<0.1	0.01	<0.1	0.01
45-64	143	0.4	0.03	0.7	0.05
65-74	427	1.9	0.09	3.2	0.15
75+	1,014	5.3	0.15	9.3	0.27
Unknown	26	1.6	0.29	2.4	0.43
Total ${ }^{(a)}$	1,620	1.1	0.03	1.6	0.04

(a) Components may not add to totals due to rounding.
(b) Estimates include 35 problems managed for which sex unknown.

Source: AIHW derived from the Survey of Morbidity and Treatment in General Practice in Australia 1990-91.

Table S5: Distribution of problems managed for other coronary heart disease ${ }^{(a)}$ by sex and age, 1990-91

Sex/ age group (years)	Number of problems managed	Proportion of all problems managed for sex and age group		Problems managed per 100 encounters for sex and age group	
		Per cent	Standard error per cent	Rate	Standard error of rate
Males					
< 1	0	0.0	0.00	0.0	0.00
1-4	0	0.0	0.00	0.0	0.00
5-14	0	0.0	0.00	0.0	0.00
15-24	0	0.0	0.00	0.0	0.00
25-44	22	0.2	0.03	0.2	0.05
45-64	245	1.7	0.10	2.6	0.16
65-74	281	2.8	0.16	4.8	0.27
75+	187	2.9	0.20	5.0	0.34
Unknown	9	1.7	0.52	2.4	0.74
Total ${ }^{(b)}$	744	1.3	0.04	1.8	0.06
Females					
< 1	0	0.0	0.00	0.0	0.00
1-4	0	0.0	0.00	0.0	0.00
5-14	1	<0.1	0.01	<0.1	0.02
15-24	0	0.0	0.00	0.0	0.00
25-44	7	<0.1	0.01	<0.1	0.02
45-64	94	0.5	0.05	0.8	0.07
65-74	199	1.6	0.11	2.7	0.18
75+	276	2.2	0.13	4.0	0.22
Unknown	5	0.7	0.28	1.0	0.42
Total ${ }^{(b)}$	581	0.7	0.03	1.0	0.04
$\text { Persons }{ }^{(c)}$					
< 1	0	0.0	0.00	0.0	0.00
1-4	0	0.0	0.00	0.0	0.00
5-14	1	< 0.1	0.01	< 0.1	0.01
15-24	0	0.0	0.00	0.0	0.00
25-44	29	0.1	0.01	0.1	0.02
45-64	343	1.0	0.05	1.6	0.08
65-74	484	2.1	0.09	3.6	0.16
75+	472	2.5	0.11	4.3	0.19
Unknown	19	1.2	0.24	1.7	0.36
Total ${ }^{(b)}$	1,347	0.9	0.02	1.4	0.03

(a) Excludes angina and acute myocardial infarction.
(b) Components may not add to totals due to rounding.
(c) Estimates include 23 problems managed for which sex unknown.

[^20]Table S6: Distribution of problems managed for angina by sex and age, 1990-91

Sex/ age group (years)	Number of problems managed	Proportion of all problems managed for sex and age group		Problems managed per 100 encounters for sex and age group	
		Per cent	Standard error per cent	Rate	Standard error of rate
Males					
<1	0	0.0	0.00	0.0	0.00
1-4	0	0.0	0.00	0.0	0.00
5-14	0	0.0	0.00	0.0	0.00
15-24	0	0.0	0.00	0.0	0.00
25-44	11	0.1	0.02	0.1	0.03
45-64	108	0.8	0.07	1.2	0.10
65-74	124	1.2	0.11	2.1	0.18
75+	95	1.5	0.14	2.5	0.25
Unknown	5	0.9	0.39	1.3	0.56
Total ${ }^{(a)}$	343	0.6	0.03	0.8	0.04
Females					
< 1	0	0.0	0.00	0.0	0.00
1-4	0	0.0	0.00	0.0	0.00
5-14	0	0.0	0.00	0.0	0.00
15-24	0	0.0	0.00	0.0	0.00
25-44	9	< 0.1	0.01	0.1	0.02
45-64	75	0.4	0.04	0.6	0.07
65-74	119	0.9	0.08	1.6	0.14
75+	169	1.4	0.10	2.4	0.18
Unknown	1	0.1	0.12	0.2	0.18
Total ${ }^{\text {(a) }}$	373	0.4	0.02	0.7	0.03
Persons ${ }^{(b)}$					
< 1	0	0.0	0.00	0.0	0.00
1-4	0	0.0	0.00	0.0	0.00
5-14	0	0.0	0.00	0.0	0.00
15-24	0	0.0	0.00	0.0	0.00
25-44	21	0.1	0.01	0.1	0.02
45-64	185	0.5	0.04	0.8	0.06
65-74	246	1.1	0.06	1.9	0.11
75+	272	1.4	0.08	2.5	0.14
Unknown	7	0.4	0.15	0.6	0.22
Total ${ }^{(a)}$	731	0.5	0.02	0.7	0.03

(a) Components may not add to totals due to rounding.
(b) Estimates include 16 problems managed for which sex unknown.

Source: AIHW derived from the Survey of Morbidity and Treatment in General Practice in Australia 1990-91.

Table S7: Distribution of problems managed for cerebrovascular disease by sex and age, 1990-91

Sex/ age group (years)	Number of problems managed	Proportion of all problems managed for sex and age group		Problems managed per 100 encounters for sex and age group	
		Per cent	Standard error per cent	Rate	Standard error of rate
Males					
<1	0	0.0	0.00	0.0	0.00
1-4	1	<0.1	0.03	<0.1	0.03
5-14	0	0.0	0.00	0.0	0.00
15-24	1	< 0.1	0.02	< 0.1	0.02
25-44	4	< 0.1	0.01	<0.1	0.02
45-64	53	0.4	0.05	0.6	0.07
65-74	99	1.0	0.10	1.7	0.16
75+	109	1.7	0.15	2.9	0.26
Unknown	2	0.4	0.25	0.5	0.36
Total ${ }^{(a)}$	269	0.5	0.03	0.7	0.04
Females					
< 1	0	0.0	0.00	0.0	0.00
1-4	0	0.0	0.00	0.0	0.00
5-14	1	<0.1	0.02	<0.1	0.02
15-24	5	0.1	0.02	0.1	0.03
25-44	9	<0.1	0.01	0.1	0.02
45-64	52	0.3	0.03	0.4	0.05
65-74	90	0.7	0.07	1.2	0.12
75+	180	1.4	0.10	2.6	0.18
Unknown	2	0.3	0.18	0.4	0.27
Total ${ }^{(a)}$	339	0.4	0.02	0.6	0.03
$\text { Persons }{ }^{(b)}$					
< 1	1	<0.1	0.03	<0.1	0.04
1-4	1	<0.1	0.01	<0.1	0.02
5-14	1	<0.1	0.01	< 0.1	0.01
15-24	6	<0.1	0.02	0.1	0.02
25-44	13	<0.1	0.01	0.1	0.01
45-64	104	0.3	0.03	0.5	0.04
65-74	190	0.8	0.06	1.4	0.10
75+	294	1.5	0.08	2.7	0.15
Unknown	5	0.3	0.13	0.5	0.19
Total ${ }^{(a)}$	615	0.4	0.02	0.6	0.02

[^21][^22]Table S8: Distribution of problems managed for other cardiovascular conditions by sex, 1990-91

Condition / sex	Number of problems managed	Proportion of all problems managed for sex and age group		Problems managed per 100 encounters for sex and age group	
		Per cent	Standard error per cent	Rate	Standard error of rate
Peripheral vascular disease					
Males	231	0.4	0.02	0.6	0.03
Females	193	0.2	0.02	0.3	0.02
Persons ${ }^{(a)}$	427	0.3	0.01	0.4	0.02
Acute myocardial infarction					
Males	41	0.1	0.01	0.1	0.01
Females	29	<0.1	0.01	0.1	0.01
Persons ${ }^{(b)}$	71	<0.1	0.01	0.1	0.01
Atherosclerosis					
Males	20	<0.1	0.01	0.1	0.01
Females	24	< 0.1	0.01	<0.1	0.01
Persons	44	<0.1	<0.01	<0.1	0.01
Rheumatic heart disease					
Males	20	<0.1	0.01	<0.1	0.01
Females	29	<0.1	0.01	<0.1	0.01
Persons	49	<0.1	<0.01	< 0.1	0.01

[^23](b) Estimates include 1 problem managed.

[^24]Table S9: Ten most frequently prescribed drugs for all cardiovascular disease, 1990-91

	Number of prescriptions written	Percentage of all prescriptions written for condition	Number of prescriptions written per 100 problems managed for condition
Feneric drug name	1,107	7.4	6.1
Atenolol	1,040	7.0	5.7
Digoxin	834	5.6	4.6
Verapamil	823	5.5	4.5
Metoprolol	788	5.3	4.3
Enalapril maleate	747	5.0	4.1
Captopril	729	4.9	4.0
Nifedipine	632	4.2	3.5
Prazosin hydrochloride	614	4.1	3.4
Potassium chloride	610	4.1	3.4

Source: AIHW derived from the Survey of Morbidity and Treatment in General Practice in Australia 1990-91.

Table S10: Ten most frequently prescribed drugs for angina, 1990-91

	Number of prescriptions written	Percentage of all prescriptions written for condition	Number of prescriptions written per 100 problems managed for condition
Generic drug name	273	34.1	37.3
Glyceryl trinitrate	140	17.6	19.2
Sorbide nitrate	74	9.3	10.1
Nifedipine	66	8.2	9.0
Diltiazem	43	5.3	5.8
Glyceryl trinitrate ointment	33	4.1	4.5
Aspirin	29	3.6	3.9
Atenolol	28	3.5	3.8
Verapamil	27	3.4	3.7
Metoprolol	12	1.5	1.7
Digoxin			

[^25]Table S11: Ten most frequently prescribed drugs for other and chronic coronary heart disease, 1990-91

Generic drug name	Number of prescriptions written	Percentage of all prescriptions written for condition	Number of prescriptions written per 100 problems managed for condition
Glyceryl trinitrate	258	18.1	19.2
Sorbide nitrate	224	15.7	16.6
Nifedipine	98	6.9	7.3
Diltiazem	95	6.7	7.1
Frusemide	95	6.6	7.0
Digoxin	94	6.6	7.0
Aspirin	70	4.9	5.2
Metoprolol	62	4.4	4.6
Verapamil	61	4.3	4.5
Atenolol	53	3.7	3.9

Source: AIHW derived from the Survey of Morbidity and Treatment in General Practice in Australia 1990-91.

Table S12: Ten most frequently prescribed drugs for heart failure, 1990-91

Generic drug name	Number of prescriptions written	Percentage of all prescriptions written for condition	Number of prescriptions written per 100 problems managed for condition
Frusemide	642	32.6	39.6
Digoxin	374	19.0	23.1
Potassium chloride	272	13.8	16.8
Captopril	143	7.3	8.8
Amiloride	51	2.6	3.2
Thiazide + amilor	43	2.2	2.7
Enalapril maleate	40	2.0	2.5
Spironolactone	34	1.7	2.1
Triamterene	29	1.5	1.8
Bumetanide	27	1.4	1.7

[^26]Table S13: Ten most frequently prescribed drugs for hypertension, 1990-91

Generic drug name	Number of prescriptions written	Percentage of all prescriptions written for condition	Number of prescriptions written per 100 problems managed for condition
Atenolol	910	11.0	9.7
Enalapril maleate	667	8.0	7.1
Metoprolol	649	7.8	6.9
Verapamil	619	7.5	6.6
Prazosin hydrochloride	588	7.1	6.3
Captopril	525	6.3	5.6
Felodipine	476	5.7	5.1
Nifedipine	405	4.9	4.3
Methyldopa	405	4.9	4.3
Thiazide + amilor	380	4.6	4.1

Source: AIHW derived from the Survey of Morbidity and Treatment in General Practice in Australia 1990-91.

Table S14: Ten most frequently prescribed drugs for cerebrovascular disease, 1990-91

Generic drug name	Number of prescriptions written	Percentage of all prescriptions written for condition	Number of prescriptions written per 100 problems managed
Aspirin	136	45.3	22.1
Prochlorperazine	43	14.2	6.9
Warfarin	32	10.6	5.2
Nicotinic acid	6	2.0	1.0
Glyceryl trinitrate	5	1.6	0.8
Dipyridamole	5	1.6	0.8
Metoprolol	5	1.6	0.8
Nifedipine	5	1.6	0.8
Paracetamol	5	1.6	0.8
Sorbide nitrate	3	1.0	0.5

[^27]Table S15: Distribution of all prescriptions and cardiovascular prescriptions written by sex and age, 1990-91

Sex/ age group (years)	Number of prescriptions written	Number of cardiovascular prescriptions written	Percentage of all prescriptions written	Number of cardiovascular prescriptions written per 100 problems managed
Males				
< 1	1,029	0	0.0	0.0
1-4	2,513	0	0.0	0.0
5-14	2,407	6	0.2	0.1
15-24	3,298	23	0.7	0.4
25-44	7,775	399	5.1	3.2
45-64	9,494	2,006	21.1	14.0
65-74	7,253	1,853	25.5	18.7
75+	4,544	1,212	26.7	18.9
Unknown	346	54	15.6	10.5
Total ${ }^{(a)}$	39,658	5,553	14.0	9.5
Females				
< 1	903	1	0.1	0.1
1-4	2,256	2	0.1	0.1
5-14	3,264	16	0.5	0.3
15-24	5,222	55	1.1	0.7
25-44	12,449	479	3.8	2.2
45-64	13,794	2,414	17.5	12.1
65-74	9,385	2,546	27.1	20.1
75+	9,286	2,656	28.6	21.3
Unknown	505	73	14.5	10.0
Total ${ }^{(a)}$	57,063	8,240	14.4	9.7
Persons ${ }^{(b)}$				
< 1	2,025	2	0.1	0.1
1-4	4,942	2	0.0	0.0
5-14	6,806	22	0.3	0.2
15-24	8,615	80	0.9	0.6
25-44	20.494	891	4.3	2.6
45-64	23,571	4,475	19.0	12.9
65-74	16,881	4,456	26.4	19.5
75+	14,100	3,954	28.0	20.6
Unknown	1,121	166	14.8	10.3
Total ${ }^{(a)}$	98,556	14,047	14.3	9.6

[^28][^29]Table S16: Ten most frequently prescribed cardiovascular drugs, 1990-91
\(\left.$$
\begin{array}{lrrrr}\hline & \begin{array}{r}\text { Number of } \\
\text { prescriptions } \\
\text { written }\end{array} & \begin{array}{r}\text { Percentage of all } \\
\text { cardiovascular } \\
\text { prescriptions } \\
\text { written }\end{array} & \begin{array}{r}\text { Percentage of } \\
\text { all }\end{array} & \begin{array}{r}\text { Prescriptions } \\
\text { written per 100 } \\
\text { problems }\end{array}
$$

written\end{array} \quad $$
\begin{array}{r}\text { managed }\end{array}
$$\right]\)| Generic drug name |
| :--- |

Source: AIHW derived from the Survey of Morbidity and Treatment in General Practice in Australia 1990-91.

National Hospital Morbidity Database

Table S17: Separations and patient days for all cardiovascular disease by sex and age, public acute and private hospitals, 1995-96

Sex/age group (years)	Principal diagnosis only			Principal or additional diagnosis ${ }^{(a)}$		
	Number of separations	Age-specific separation rate ${ }^{(b)}$	Patient days	Number of separations	Age-specific separation rate ${ }^{(b)}$	Patient days
Males						
<1	293	227.2	1,596	1,293	1,002.8	22,452
1-4	259	48.9	1,100	739	139.5	4,821
5-14	616	46.2	2,491	1,326	99.5	6,662
15-24	2,223	161.2	7,653	4,260	309.0	22,618
25-34	5,984	417.9	19,276	11,044	771.3	47,685
35-44	15,157	1,088.6	55,727	28,227	2,027.3	120,083
45-54	32,993	2,805.4	134,959	62,474	5,312.2	299,688
55-64	47,619	6,149.0	239,587	99,193	12,808.7	555,660
65-74	69,913	11,402.7	468,331	163,879	26,728.4	1,174,762
75+	56,226	16,199.1	504,916	151,836	43,744.9	1,521,403
Unknown	0	n.a.	0	4	n.a.	50
All ages	231,283	2,540.3	1,435,636	524,275	5,758.3	3,775,884
Females						
<1	195	159.4	1,221	1,018	832.1	17,715
1-4	216	43.0	1,024	642	127.8	4,616
5-14	460	36.3	2,014	1,045	82.5	6,597
15-24	1,881	143.0	6,524	4,750	361.0	21,945
25-34	6,346	443.7	20,534	14,185	991.8	59,341
35-44	11,951	853.8	37,623	25,518	1,823.1	112,624
45-54	18,518	1,622.3	71,480	47,254	4,139.7	218,531
55-64	25,442	3,344.0	131,868	71,139	9,350.2	403,712
65-74	46,699	6,860.7	308,645	131,947	19,384.7	1,021,512
75+	69,792	12,362.0	705,834	206,143	36,513.3	2,424,453
Unknown	2	n.a.	12	18	n.a.	135
All ages	181,502	1,976.2	1,286,779	503,659	5,483.8	4,291,181
Persons						
<1	488	194.2	2,817	2,311	919.7	40,167
1-4	475	46.0	2,124	1,381	133.8	9,437
5-14	1,076	41.4	4,505	2,371	91.2	13,259
15-24	4,104	152.3	14,177	9,010	334.4	44,563
25-34	12,330	430.8	39,810	25,229	881.5	107,026
35-44	27,108	970.9	93,350	53,745	1,924.9	232,707
45-54	51,511	2,222.7	206,439	109,728	4,734.7	518,219
55-64	73,061	4,758.9	371,455	170,332	11,094.7	959,372
65-74	116,612	9,013.1	776,976	295,826	22,864.8	2,196,274
75+	126,018	13,822.9	1,210,750	357,979	39,266.6	3,945,856
Unknown	2	n.a.	12	22	n.a.	185
All ages	412,785	2,257.0	2,722,415	1,027,934	5,620.5	8,067,065

n.a. not applicable.
(a) Only one diagnosis per separation counted.
(b) Separations per 100,000 mid-1996 Australian population for sex and age group.

Table S18: Separations and average length of stay for rheumatic heart disease by sex and age, public acute and private hospitals, 1995-96

Sex/age group (years)	Principal diagnosis only			Principal or additional diagnosis ${ }^{(a)}$		
	Number of separations	Age-specific separation rate ${ }^{(b)}$	Patient days	Number of separations	Age-specific separation rate ${ }^{(b)}$	Patient days
Males						
<1	0	0.0	0	8	6.2	67
1-4	4	0.8	12	22	4.2	92
5-14	75	5.6	446	94	7.1	511
15-24	55	4.0	457	112	8.1	970
25-34	61	4.3	492	147	10.3	1,174
35-44	70	5.0	367	182	13.1	981
45-54	84	7.1	507	299	25.4	2,206
55-64	129	16.7	960	609	78.6	4,944
65-74	144	23.5	1,314	939	153.2	8,179
$75+$	105	30.3	935	1,110	319.8	11,369
Unknown	0	n.a.	0	0	n.a.	0
All ages	727	8.0	5,490	3,522	38.7	30,493
Females						
< 1	3	2.5	11	8	6.5	90
1-4	3	0.6	68	12	2.4	104
5-14	64	5.1	546	97	7.7	798
15-24	46	3.5	189	165	12.5	835
25-34	99	6.9	696	355	24.8	2,101
35-44	110	7.9	593	424	30.3	2,348
45-54	171	15.0	886	664	58.2	4,247
55-64	243	31.9	2,023	968	127.2	7,044
65-74	275	40.4	2,183	1,555	228.5	13,513
$75+$	178	31.5	1,685	2,316	410.2	25,267
Unknown	0	n.a.	0	0	n.a.	0
All ages	1,192	13.0	8,880	6,564	71.5	56,347
Persons						
<1	3	1.2	11	16	6.4	157
1-4	7	0.7	80	34	3.3	196
5-14	139	5.4	992	191	7.4	1,309
15-24	101	3.8	646	277	10.3	1,805
25-34	160	5.6	1,188	502	17.5	3,275
35-44	180	6.5	960	606	21.7	3,329
45-54	255	11.0	1,393	963	41.6	6,453
55-64	372	24.2	2,983	1,577	102.7	11,988
65-74	419	32.4	3,497	2,494	192.8	21,692
75+	283	31.0	2,620	3,426	375.8	36,636
Unknown	0	n.a.	0	0	n.a.	0
All ages	1,919	10.5	14,370	10,086	55.2	86,840

n.a. not applicable.
(a) Only one diagnosis per separation counted.
(b) Separations per 100,000 mid-1996 Australian population for sex and age group.

Table S19: Separations and patient days for hypertensive disease by sex and age, public acute and private hospitals, Australia, 1995-96

Sex/age group (years)	Principal diagnosis only			Principal or additional diagnosis ${ }^{(a)}$		
	Number of separations	Age-specific separation rate ${ }^{(b)}$	Patient days	Number of separations	Age-specific separation rate ${ }^{(b)}$	Patient days
Males						
< 1	23	17.8	78	86	66.7	1,175
1-4	17	3.2	79	80	15.1	771
5-14	53	4.0	224	246	18.5	1,730
15-24	75	5.4	262	771	55.9	4,298
25-34	148	10.3	726	2,633	183.9	11,451
35-44	302	21.7	1,049	9,069	651.4	39,050
45-54	572	48.6	1,953	25,170	2,140.2	110,905
55-64	661	85.4	2,861	43,988	5,680.1	236,128
65-74	710	115.8	4,966	73,012	11,908.1	459,426
75+	560	161.3	7,188	55,560	16,007.2	456,653
Unknown	0	n.a.	0	1	n.a.	14
All ages	3,121	34.3	19,386	210,616	2,313.3	1,321,601
Females						
<1	5	4.1	8	58	47.4	1,103
1-4	4	0.8	32	70	13.9	1,119
5-14	44	3.5	114	168	13.3	1,088
15-24	71	5.4	264	835	63.5	3,831
25-34	165	11.5	636	2,693	188.3	11,677
35-44	349	24.9	1,479	8,480	605.8	35,543
45-54	719	63.0	2,740	23,501	2,058.8	102,668
55-64	870	114.4	10,571	41,189	5,413.7	218,652
65-74	1,329	195.3	6,660	75,893	11,149.6	518,219
75+	1,768	313.2	21,742	101,378	17,956.7	996,250
Unknown	0	n.a.	0	9	n.a.	72
All ages	5,324	58.0	44,246	254,274	2,768.5	1,890,222
Persons						
< 1	28	11.1	86	144	57.3	2,278
1-4	21	2.0	111	150	14.5	1,890
5-14	97	3.7	338	414	15.9	2,818
15-24	146	5.4	526	1,606	59.6	8,129
25-34	313	10.9	1,362	5,326	186.1	23,128
35-44	651	23.3	2,528	17,549	628.5	74,593
45-54	1,291	55.7	4,693	48,671	2,100.1	213,573
55-64	1,531	99.7	13,432	85,177	5,548.1	454,780
65-74	2,039	157.6	11,626	148,905	11,509.1	977,645
75+	2,328	255.4	28,930	156,938	17,214.5	1,452,903
Unknown	0	n.a.	0	10	n.a.	86
All ages	8,445	46.2	63,632	464,890	2,541.9	3,211,823

n.a. not applicable.
(a) Only one diagnosis per separation counted.
(b) Separations per 100,000 mid-1996 Australian population for sex and age group.

Table S20: Separations and patient days for acute myocardial infarction by sex and age, public acute and private hospitals, 1995-96

Sex/age group (years)	Principal diagnosis only			Principal or additional diagnosis ${ }^{(a)}$		
	Number of separations	Age-specific separation rate ${ }^{(b)}$	Patient days	Number of separations	Age-specific separation $\operatorname{rate}^{(b)}$	Patient days
Males						
< 1	0	0.0	0	0	0.0	0
1-4	2	0.4	8	2	0.4	8
5-14	0	0.0	0	2	0.2	37
15-24	20	1.5	65	22	1.6	110
25-34	212	14.8	1,026	345	24.1	1,311
35-44	1,403	100.8	7,732	2,018	144.9	9,533
45-54	3,919	333.2	23,085	5,375	457.0	35,605
55-64	5,017	647.8	31,739	7,050	910.4	44,184
65-74	6,159	1,004.5	43,987	8,793	1,434.1	67,792
75+	5,086	1,465.3	39,364	7,710	2,221.3	70,973
Unknown	0	n.a.	0	0	n.a.	0
All ages	21,818	239.6	147,006	31,317	344.0	229,553
Females						
< 1	0	0.0	0	4	3.3	44
1-4	0	0.0	0	0	0.0	0
5-14	1	0.1	11	3	0.2	62
15-24	3	0.2	35	7	0.5	46
25-34	43	3.0	232	60	4.2	342
35-44	258	18.4	1,579	387	27.7	2,062
45-54	750	65.7	4,808	1,019	89.3	6,345
55-64	1,545	203.1	10,958	2,151	282.7	15,750
65-74	3,298	484.5	24,920	4,851	712.7	42,644
75+	5,285	936.1	46,448	8,074	1,430.1	94,749
Unknown	0	n.a.	0	0	n.a.	0
All ages	11,183	121.8	88,991	16,556	180.3	162,044
Persons						
< 1	0	0.0	0	4	1.6	44
1-4	2	0.2	8	2	0.2	8
5-14	1	0.0	11	5	0.2	99
15-24	23	0.9	100	29	1.1	156
25-34	255	8.9	1,258	405	14.2	1,653
35-44	1,661	59.5	9,311	2,405	86.1	11,595
45-54	4,669	201.5	27,893	6,394	275.9	41,950
55-64	6,562	427.4	42,697	9,201	599.3	59,934
65-74	9,457	730.9	68,907	13,644	1,054.6	110,436
75+	10,371	1,137.6	85,812	15,784	1,731.3	165,722
Unknown	0	n.a.	0	0	n.a.	0
All ages	33,001	180.4	235,997	47,873	261.8	391,597

n.a. not applicable.
(a) Only one diagnosis per separation counted.
(b) Separations per 100,000 mid-1996 Australian population for sex and age group.

Table S21: Separations and patient days for coronary heart disease by sex and age, public acute and private hospitals, 1995-96

Sex/age group (years)	Principal diagnosis only			Principal or additional diagnosis ${ }^{(a)}$		
	Number of separations	Age-specific separation rate ${ }^{(b)}$	Patient days	Number of separations	Age-specific separation rate ${ }^{(b)}$	Patient days
Males						
< 1	0	0.0	0	3	2.3	44
1-4	6	1.1	12	12	2.3	32
5-14	5	0.4	23	11	0.8	79
15-24	43	3.1	109	71	5.2	421
25-34	602	42.0	2,177	916	64.0	3,093
35-44	5,347	384.0	20,706	7,132	512.2	27,684
45-54	17,410	1,480.4	71,777	24,356	2,071.0	110,959
55-64	25,735	3,323.2	118,193	43,472	5,613.5	221,059
65-74	32,271	5,263.3	169,901	72,873	11,885.5	455,815
75+	18,138	5,225.7	119,580	63,444	18,278.6	543,226
Unknown	0	n.a.	0	1	n.a.	7
All ages	99,557	1,093.5	502,478	212,291	2,331.7	1,362,419
Females						
< 1	1	0.8	8	7	5.7	113
1-4	1	0.2	4	8	1.6	71
5-14	2	0.2	13	5	0.4	66
15-24	17	1.3	62	54	4.1	251
25-34	160	11.2	1,306	301	21.1	2,112
35-44	1,279	91.4	4,887	2,036	145.5	18,179
45-54	4,611	404.0	20,601	7,622	667.7	43,901
55-64	9,507	1,249.6	43,265	17,874	2,349.3	97,858
65-74	17,825	2,618.7	95,655	43,537	6,396.1	295,435
75+	19,775	3,502.7	135,677	73,213	12,968.0	752,972
Unknown	1	n.a.	2	4	n.a.	18
All ages	53,179	579.0	301,480	144,661	1,575.1	1,210,976
Persons						
< 1	1	0.4	8	10	4.0	157
1-4	7	0.7	16	20	1.9	103
5-14	7	0.3	36	16	0.6	145
15-24	60	2.2	171	125	4.6	672
25-34	762	26.6	3,483	1,217	42.5	5,205
35-44	6,626	237.3	25,593	9,168	328.4	45,863
45-54	22,021	950.2	92,378	31,978	1,379.8	154,860
55-64	35,242	2,295.5	161,458	61,346	3,995.8	318,917
65-74	50,096	3,872.0	265,556	116,410	8,997.5	751,250
75+	37,913	4,158.7	255,257	136,657	14,989.9	1,296,198
Unknown	1	n.a.	2	5	n.a.	25
All ages	152,736	835.1	803,958	356,952	1,951.7	2,573,395

n.a. not applicable.
(a) Only one diagnosis per separation counted.
(b) Separations per 100,000 mid-1996 Australian population for sex and age group.

Table S22: Separations and patient days for heart failure by sex and age, public acute and private hospitals, 1995-96

Sex/age group (years)	Principal diagnosis only			Principal or additional diagnosis ${ }^{(a)}$		
	Number of separations	Age-specific separation rate ${ }^{(b)}$	Patient days	Number of separations	Age-specific separation rate ${ }^{(b)}$	Patient days
Males						
< 1	41	31.8	234	184	142.7	2,226
1-4	18	3.4	105	65	12.3	422
5-14	28	2.1	211	56	4.2	492
15-24	45	3.3	260	109	7.9	887
25-34	107	7.5	552	325	22.7	2,446
35-44	216	15.5	1,140	735	52.8	5,391
45-54	800	68.0	4,915	2,584	219.7	20,056
55-64	2,290	295.7	17,604	7,281	940.2	63,883
65-74	6,279	1,024.1	49,104	22,017	3,590.9	210,348
75+	10,363	2,985.7	104,701	39,106	11,266.7	451,374
Unknown	0	n.a.	0	0	n.a.	0
All ages	20,187	221.7	178,826	72,462	795.9	757,525
Females						
< 1	29	23.7	218	168	137.3	2,353
1-4	27	5.4	147	114	22.7	696
5-14	25	2.0	154	77	6.1	690
15-24	19	1.4	234	77	5.9	775
25-34	73	5.1	466	255	17.8	2,501
35-44	146	10.4	953	509	36.4	4,076
45-54	410	35.9	2,513	1,566	137.2	22,469
55-64	1,280	168.2	9,032	4,898	643.8	48,298
65-74	4,335	636.9	38,477	16,771	2,463.9	187,465
75+	14,179	2,511.5	160,922	56,580	10,021.8	784,844
Unknown	0	n.a.	0	5	n.a.	35
All ages	20,523	223.5	213,116	81,020	882.1	1,054,202
Persons						
< 1	70	27.9	452	352	140.1	4,579
1-4	45	4.4	252	179	17.3	1,118
5-14	53	2.0	365	133	5.1	1,182
15-24	64	2.4	494	186	6.9	1,662
25-34	180	6.3	1,018	580	20.3	4,947
35-44	362	13.0	2,093	1,244	44.6	9,467
45-54	1,210	52.2	7,428	4,150	179.1	42,525
55-64	3,570	232.5	26,636	12,179	793.3	112,181
65-74	10,614	820.4	87,581	38,788	2,998.0	397,813
75+	24,542	2,692.0	265,623	95,686	10,495.8	1,236,218
Unknown	0	n.a.	0	5	n.a.	35
All ages	40,710	222.6	391,942	153,482	839.2	1,811,727

n.a. not applicable.
(a) Only one diagnosis per separation counted.
(b) Separations per 100,000 mid-1996 Australian population for sex and age group.

Table S23: Separations and patient days for cerebrovascular disease by sex and age, public acute and private hospitals, 1995-96

Sex/age group (years)	Principal diagnosis only			Principal or additional diagnosis ${ }^{(a)}$		
	Number of separations	Age-specific separation rate ${ }^{(b)}$	Patient days	Number of separations	Age-specific separation $\text { rate }^{(b)}$	Patient days
Males						
< 1	34	26.4	171	72	55.8	614
1-4	30	5.7	143	87	16.4	420
5-14	48	3.6	600	152	11.4	1,146
15-24	140	10.2	1,069	313	22.7	2,592
25-34	266	18.6	2,456	526	36.7	6,266
35-44	681	48.9	7,508	1,216	87.3	15,733
45-54	1,832	155.8	15,493	3,544	301.4	47,513
55-64	3,971	512.8	33,041	8,394	1,083.9	99,640
65-74	8,862	1,445.4	106,592	20,428	3,331.8	273,722
75+	10,518	3,030.3	138,915	25,443	7,330.3	397,453
Unknown	0	n.a.	0	1	n.a.	14
All ages	26,382	289.8	305,988	60,176	660.9	845,113
Females						
< 1	16	13.1	136	46	37.6	728
1-4	19	3.8	109	64	12.7	340
5-14	33	2.6	191	123	9.7	1,000
15-24	103	7.8	1,030	247	18.8	2,310
25-34	314	22.0	2,885	685	47.9	6,229
35-44	608	43.4	5,791	1,116	79.7	13,428
45-54	1,275	111.7	10,222	2,457	215.3	22,880
55-64	2,327	305.9	22,933	4,833	635.2	64,795
65-74	6,072	892.1	73,165	13,439	1,974.4	215,767
75+	14,138	2,504.2	218,656	31,688	5,612.8	591,744
Unknown	1	n.a.	10	2	n.a.	11
All ages	24,906	271.2	335,128	54,700	595.6	919,232
Persons						
< 1	50	19.9	307	118	47.0	1,342
1-4	49	4.8	252	151	14.6	760
5-14	81	3.1	791	275	10.6	2,146
15-24	243	9.0	2,099	560	20.8	4,902
25-34	580	20.3	5,341	1,211	42.3	12,495
35-44	1,289	46.2	13,299	2,332	83.5	29,161
45-54	3,107	134.1	25,715	6,001	258.9	70,393
55-64	6,298	410.2	55,974	13,227	861.6	164,435
65-74	14,934	1,154.3	179,757	33,867	2,617.6	489,489
75+	24,656	2,704.5	357,571	57,131	6,266.7	989,197
Unknown	1	n.a.	10	3	n.a.	25
All ages	51,288	280.4	641,116	114,876	628.1	1,764,345

n.a. not applicable.
(a) Only one diagnosis per separation counted.
(b) Separations per 100,000 mid-1996 Australian population for sex and age group.

Table S24: Separations and patient days for peripheral vascular disease by sex and age, public acute and private hospitals, 1995-96

Sex/age group (years)	Principal diagnosis only			Principal or additional diagnosis ${ }^{(a)}$		
	Number of separations	Age-specific separation rate ${ }^{(b)}$	Patient days	Number of separations	Age-specific separation rate ${ }^{(b)}$	Patient days
Males						
< 1	1	0.8	6	15	11.6	479
1-4	1	0.2	35	12	2.3	72
5-14	9	0.7	29	24	1.8	100
15-24	31	2.3	120	75	5.4	725
25-34	99	6.9	534	185	12.9	1,111
35-44	166	11.9	1,163	483	34.7	4,262
45-54	455	38.7	3,036	1,563	132.9	12,479
55-64	1,589	205.2	12,108	5,054	652.6	43,620
65-74	3,897	635.6	35,583	12,879	2,100.5	130,767
75+	3,240	933.5	33,899	13,174	3,795.5	160,529
Unknown	0	n.a.	0	0	n.a.	0
All ages	9,488	104.2	86,513	33,464	367.6	354,144
Females						
< 1	3	2.5	4	12	9.8	133
1-4	1	0.2	2	7	1.4	125
5-14	5	0.4	40	29	2.3	287
15-24	42	3.2	157	111	8.4	647
25-34	69	4.8	480	280	19.6	1,820
35-44	133	9.5	748	531	37.9	2,941
45-54	274	24.0	1,930	1,038	90.9	7,638
55-64	452	59.4	3,477	2,043	268.5	18,458
65-74	1,525	224.0	13,048	5,869	862.2	57,692
75+	2,340	414.5	23,743	10,416	1,845.0	145,512
Unknown	0	n.a.	0	0	n.a.	0
All ages	4,844	52.7	43,629	20,336	221.4	235,253
Persons						
< 1	4	1.6	10	27	10.8	612
1-4	2	0.2	37	19	1.8	197
5-14	14	0.5	69	53	2.0	387
15-24	73	2.7	277	186	6.9	1,372
25-34	168	5.9	1,014	465	16.3	2,931
35-44	299	10.7	1,911	1,014	36.3	7,203
45-54	729	31.5	4,966	2,601	112.2	20,117
55-64	2,041	132.9	15,585	7,097	462.3	62,078
65-74	5,422	419.1	48,631	18,748	1,449.1	188,459
75+	5,580	612.1	57,642	23,590	2,587.6	306,041
Unknown	0	n.a.	0	0	n.a.	0
All ages	14,332	78.4	130,142	53,800	294.2	589,397

n.a. not applicable.
(a) Only one diagnosis per separation counted.
(b) Separations per 100,000 mid-1996 Australian population for sex and age group.

Table S25: Separations and patient days for chest pain with heart disease by sex and age, public acute and private hospitals, 1995-96

Sex/age group (years)	Principal diagnosis only			Principal or additional diagnosis ${ }^{(a)}$		
	Number of separations	Age-specific separation rate ${ }^{(b)}$	Patient days	Number of separations	Age-specific separation rate ${ }^{(b)}$	Patient days
Males						
< 1	0	0.0	0	0	0.0	0
1-4	1	0.2	12	2	0.4	14
5-14	3	0.2	4	8	0.6	14
15-24	26	1.9	42	33	2.4	62
25-34	100	7.0	196	133	9.3	335
35-44	435	31.2	895	547	39.3	1,321
45-54	1,096	93.2	2,456	1,347	114.5	3,827
55-64	1,396	180.3	3,490	1,826	235.8	5,919
65-74	1,694	276.3	4,682	2,312	377.1	9,540
75+	1,069	308.0	3,884	1,659	478.0	10,146
Unknown	0	n.a.	0	0	n.a.	0
All ages	5,820	63.9	15,661	7,867	86.4	31,178
Females						
< 1	0	0.0	0	1	0.8	70
1-4	0	0.0	0	0	0.0	0
5-14	0	0.0	0	0	0.0	0
15-24	12	0.9	30	32	2.4	160
25-34	43	3.0	96	65	4.5	191
35-44	182	13.0	408	250	17.9	849
45-54	487	42.7	1,144	651	57.0	1,844
55-64	799	105.0	2,193	1,093	143.7	4,109
65-74	1,412	207.4	4,420	1,924	282.7	8,745
75+	1,455	257.7	5,444	2,304	408.1	15,016
Unknown	0	n.a.	0	0	n.a.	0
All ages	4,390	47.8	13,735	6,320	68.8	30,984
Persons						
< 1	0	0.0	0	1	0.4	70
1-4	1	0.1	12	2	0.2	14
5-14	3	0.1	4	8	0.3	14
15-24	38	1.4	72	65	2.4	222
25-34	143	5.0	292	198	6.9	526
35-44	617	22.1	1,303	797	28.6	2,170
45-54	1,583	68.3	3,600	1,998	86.2	5,671
55-64	2,195	143.0	5,683	2,919	190.1	10,028
65-74	3,106	240.1	9,102	4,236	327.4	18,285
75+	2,524	276.9	9,328	3,963	434.7	25,162
Unknown	0	n.a.	0	0	n.a.	0
All ages	10,210	55.8	29,396	14,187	77.6	62,162

n.a. not applicable.
(a) Only one diagnosis per separation counted.
(b) Separations per 100,000 mid-1996 Australian population for sex and age group.

Table S26: Separations and patient days for open heart valve replacement surgery by sex and age, public acute and private hospitals, 1995-96

Sex/age group (years)	Number of separations ${ }^{(a)}$	Age-specific separation rate ${ }^{(b)}$	Patient days	Average length of stay (days)
Males				
< 1	2	1.6	60	30.0
1-4	5	0.9	68	13.6
5-14	16	1.2	127	7.9
15-24	44	3.2	626	14.2
25-34	65	4.5	950	14.6
35-44	113	8.1	1,354	12.0
45-54	222	18.9	2,782	12.5
55-64	432	55.8	5,699	13.2
65-74	733	119.6	9,949	13.6
75+	411	118.4	6,336	15.4
All ages	2,043	22.4	27,951	13.7
Females				
< 1	8	6.5	148	18.5
1-4	15	3.0	285	19.0
5-14	15	1.2	152	10.1
15-24	17	1.3	153	9.0
25-34	39	2.7	416	10.7
35-44	76	5.4	908	12.0
45-54	132	11.6	1,594	12.1
55-64	251	33.0	3,608	14.4
65-74	465	68.3	6,362	13.7
75+	346	61.3	5,414	15.7
All ages	1,364	14.9	19,040	14.0
Persons				
< 1	10	4.0	208	20.8
1-4	20	1.9	353	17.7
5-14	31	1.2	279	9.0
15-24	61	2.3	779	12.8
25-34	104	3.6	1,366	13.1
35-44	189	6.8	2,262	12.0
45-54	354	15.3	4,376	12.4
55-64	683	44.5	9,307	13.6
65-74	1,198	92.6	16,311	13.6
75+	757	83.0	11,750	15.5
All ages	3,407	18.6	46,991	13.8

(a) Principal or additional procedure; only one procedure per separation counted
(b) Separations per 100,000 mid-1996 Australian population for sex and age group.

Table S27: Separations and patient days for open heart coronary bypass surgery by sex and age, public acute and private hospitals, 1995-96

Sex/age group (years)	Number of separations ${ }^{(a)}$	Age-specific separation rate ${ }^{(b)}$	Patient days	Average length of stay (days)
Males				
< 1	0	0.0	0	0.0
1-4	0	0.0	0	0.0
5-14	0	0.0	0	0.0
15-24	0	0.0	0	0.0
25-34	35	2.4	289	8.3
35-44	456	32.8	4,175	9.2
45-54	2,126	180.8	20,653	9.7
55-64	3,979	513.8	42,381	10.7
65-74	5,323	868.2	63,477	11.9
75+	1,573	453.2	21,974	14.0
All ages	13,492	148.2	152,949	11.3
Females				
< 1	0	0.0	0	0.0
1-4	0	0.0	0	0.0
5-14	1	0.1	14	14.0
15-24	3	0.2	20	6.7
25-34	6	0.4	81	13.5
35-44	66	4.7	689	10.4
45-54	316	27.7	3,424	10.8
55-64	944	124.1	10,890	11.5
65-74	2,009	295.2	26,325	13.1
75+	839	148.6	12,650	15.1
All ages	4,184	45.6	54,093	12.9
Persons				
< 1	0	0.0	0	0.0
1-4	0	0.0	0	0.0
5-14	1	0.0	14	14.0
15-24	3	0.1	20	6.7
25-34	41	1.4	370	9.0
35-44	522	18.7	4,864	9.3
45-54	2,442	105.4	24,077	9.9
55-64	4,923	320.7	53,271	10.8
65-74	7,332	566.7	89,802	12.3
75+	2,412	264.6	34,624	14.4
All ages	17,676	96.7	207,042	11.7

(a) Principal or additional procedure; only one procedure per separation counted
(b) Separations per 100,000 mid-1996 Australian population for sex and age group.

Table S28: Separations and patient days for other cardiothoracic surgery with cardiopulmonary bypass by sex and age, public acute and private hospitals, 1995-96

Sex/age group (years)	Number of separations ${ }^{(a)}$	Age-specific separation rate ${ }^{(b)}$	Patient days	Average length of stay (days)
Males				
<1	184	142.7	2,858	15.5
1-4	159	30.0	1,829	11.5
5-14	61	4.6	513	8.4
15-24	29	2.1	537	18.5
25-34	39	2.7	350	9.0
35-44	51	3.7	527	10.3
45-54	163	13.9	1,856	11.4
55-64	280	36.2	4,143	14.8
65-74	414	67.5	6,085	14.7
75+	140	40.3	2,234	16.0
All ages	1,520	16.7	20,932	13.8
Females				
<1	179	146.3	2,807	15.7
1-4	139	27.7	1,376	9.9
5-14	74	5.8	592	8.0
15-24	38	2.9	348	9.2
25-34	44	3.1	438	10.0
35-44	53	3.8	549	10.4
45-54	66	5.8	875	13.3
55-64	124	16.3	1,913	15.4
65-74	202	29.7	3,165	15.7
$75+$	108	19.1	1,665	15.4
All ages	1,027	11.2	13,728	13.4
Persons				
<1	363	144.5	5,665	15.6
1-4	298	28.9	3,205	10.8
5-14	135	5.2	1,105	8.2
15-24	67	2.5	885	13.2
25-34	83	2.9	788	9.5
35-44	104	3.7	1,076	10.4
45-54	229	9.9	2,731	11.9
55-64	404	26.3	6,056	15.0
65-74	616	47.6	9,250	15.0
75+	248	27.2	3,899	15.7
All ages	2,547	13.9	34,660	13.6

(a) Principal or additional procedure; only one procedure per separation counted
(b) Separations per 100,000 mid-1996 Australian population for sex and age group.

Table S29: Separations and patient days for other cardiothoracic surgery without cardiopulmonary bypass by sex and age, public acute and private hospitals, 1995-96

Sex/age group (years)	Number of separations ${ }^{(a)}$	Age-specific separation rate ${ }^{(b)}$	Patient days	Average length of stay (days)
Males				
< 1	167	129.5	4,637	27.8
1-4	58	11.0	296	5.1
5-14	43	3.2	203	4.7
15-24	45	3.3	504	11.2
25-34	46	3.2	490	10.7
35-44	79	5.7	629	8.0
45-54	105	8.9	918	8.7
55-64	161	20.8	1,645	10.2
65-74	232	37.8	3,210	13.8
75+	115	33.1	1,576	13.7
All ages	1,051	11.5	14,108	13.4
Females				
< 1	121	98.9	3,868	32.0
1-4	67	13.3	372	5.6
5-14	39	3.1	139	3.6
15-24	39	3.0	242	6.2
25-34	66	4.6	548	8.3
35-44	71	5.1	445	6.3
45-54	98	8.6	635	6.5
55-64	94	12.4	961	10.2
65-74	153	22.5	1,628	10.6
75+	99	17.5	1,103	11.1
All ages	847	9.2	9,941	11.7
Persons				
< 1	288	114.6	8,505	29.5
1-4	125	12.1	668	5.3
5-14	82	3.2	342	4.2
15-24	84	3.1	746	8.9
25-34	112	3.9	1,038	9.3
35-44	150	5.4	1,074	7.2
45-54	203	8.8	1,553	7.7
55-64	255	16.6	2,606	10.2
65-74	385	29.8	4,838	12.6
75+	214	23.5	2,679	12.5
All ages	1,898	10.4	24,049	12.7

(a) Principal or additional procedure; only one procedure per separation counted
(b) Separations per 100,000 mid-1996 Australian population for sex and age group.

Table S30: Separations and patient days for percutaneous transluminal coronary angioplasty by sex and age, public acute and private hospitals, 1995-96

Sex/age group (years)	Number of separations ${ }^{(a)}$	Age-specific separation rate ${ }^{(b)}$	Patient days	Average length of stay (days)
Males				
<1	3	2.3	23	7.7
1-4	3	0.6	6	2.0
5-14	1	0.1	2	2.0
15-24	0	0.0	0	0.0
25-34	57	4.0	244	4.3
35-44	736	52.9	2,848	3.9
45-54	2,245	190.9	8,429	3.8
55-64	2,803	362.0	11,210	4.0
65-74	2,548	415.6	11,262	4.4
75+	690	198.8	3,862	5.6
All ages	9,086	99.8	37,886	4.2
Females				
< 1	1	0.8	1	1.0
1-4	5	1.0	5	1.0
5-14	4	0.3	12	3.0
15-24	1	0.1	2	2.0
25-34	15	1.1	67	4.5
35-44	122	8.7	677	5.6
45-54	408	35.7	1,860	4.6
55-64	872	114.6	4,214	4.8
65-74	1,264	185.7	6,610	5.2
75+	476	84.3	2,964	6.2
All ages	3,168	34.5	16,412	5.2
Persons				
< 1	4	1.6	24	6.0
1-4	8	0.8	11	1.4
5-14	5	0.2	14	2.8
15-24	1	0.0	2	2.0
25-34	72	2.5	311	4.3
35-44	858	30.7	3,525	4.1
45-54	2,653	114.5	10,289	3.9
55-64	3,675	239.4	15,424	4.2
65-74	3,812	294.6	17,872	4.7
75+	1,166	127.9	6,826	5.9
All ages	12,254	67.0	54,298	4.4

(a) Principal or additional procedure; only one procedure per separation counted.
(b) Separations per 100,000 mid-1996 Australian population for sex and age group.

Table S31: Separations and patient days for percutaneous intracoronary stent implant by sex and age, public acute and private hospitals, 1995-96

Sex/age group (years)	Number of separations ${ }^{(a)}$	Age-specific separation rate ${ }^{(b)}$	Patient days	Average length of stay (days)
Males				
<1	0	0.0	0	0.0
1-4	0	0.0	0	0.0
5-14	0	0.0	0	0.0
15-24	0	0.0	0	0.0
25-34	14	1.0	82	5.9
35-44	235	16.9	1,127	4.8
45-54	725	61.7	3,158	4.4
55-64	814	105.1	3,638	4.5
65-74	772	125.9	4,009	5.2
75+	202	58.2	1,252	6.2
All ages	2,762	30.3	13,266	4.8
Females				
< 1	0	0.0	0	0.0
1-4	0	0.0	0	0.0
5-14	0	0.0	0	0.0
15-24	0	0.0	0	0.0
25-34	5	0.4	31	6.2
35-44	36	2.6	169	4.7
45-54	116	10.2	561	4.8
55-64	237	31.2	1,354	5.7
65-74	355	52.2	2,245	6.3
75+	125	22.1	901	7.2
All ages	874	9.5	5,261	6.0
Persons				
< 1	0	0.0	0	0.0
1-4	0	0.0	0	0.0
5-14	0	0.0	0	0.0
15-24	0	0.0	0	0.0
25-34	19	0.7	113	6.0
35-44	271	9.7	1,296	4.8
45-54	841	36.3	3,719	4.4
55-64	1,051	68.5	4,992	4.8
65-74	1,127	87.1	6,254	5.6
75+	327	35.9	2,153	6.6
All ages	3,636	19.9	18,527	5.1

(a) Principal or additional procedure; only one procedure per separation counted.
(b) Separations per 100,000 mid-1996 Australian population for sex and age group.

Table S32: Separations and patient days for catheter ablation of lesion of heart by sex and age, public acute and private hospitals, 1995-96

Sex/age group (years)	Number of separations ${ }^{(a)}$	Age-specific separation rate ${ }^{(b)}$	Patient days	Average length of stay (days)
Males				
<1	0	0.0	0	0.0
1-4	4	0.8	4	1.0
5-14	38	2.9	78	2.1
15-24	80	5.8	129	1.6
25-34	74	5.2	116	1.6
35-44	86	6.2	173	2.0
45-54	133	11.3	281	2.1
55-64	116	15.0	425	3.7
65-74	111	18.1	598	5.4
75+	46	13.3	216	4.7
All ages	688	7.6	2,020	2.9
Females				
<1	0	0.0	0	0.0
1-4	6	1.2	14	2.3
5-14	25	2.0	38	1.5
15-24	100	7.6	149	1.5
25-34	125	8.7	230	1.8
35-44	139	9.9	219	1.6
45-54	168	14.7	359	2.1
55-64	119	15.6	290	2.4
65-74	107	15.7	317	3.0
75+	55	9.7	284	5.2
All ages	844	9.2	1,900	2.3
Persons				
< 1	0	0.0	0	0.0
1-4	10	1.0	18	1.8
5-14	63	2.4	116	1.8
15-24	180	6.7	278	1.5
25-34	199	7.0	346	1.7
35-44	225	8.1	392	1.7
45-54	301	13.0	640	2.1
55-64	235	15.3	715	3.0
65-74	218	16.9	915	4.2
75+	101	11.1	500	5.0
All ages	1,532	8.4	3,920	2.6

(a) Principal or additional procedure; only one procedure per separation counted
(b) Separations per 100,000 mid-1996 Australian population for sex and age group.

Table S33: Separations and patient days for cardiac catheterisation (diagnostic) by sex and age, public acute and private hospitals, 1995-96

Sex/age group (years)	Number of separations ${ }^{(a)}$	Age-specific separation rate ${ }^{(b)}$	Patient days	Average length of stay (days)
Males				
<1	177	137.3	1,859	10.5
1-4	252	47.6	826	3.3
5-14	118	8.9	336	2.9
15-24	104	7.5	530	5.1
25-34	473	33.0	1,592	3.4
35-44	3,056	219.5	10,630	3.5
45-54	9,520	809.5	33,044	3.5
55-64	13,289	1,716.0	50,793	3.8
65-74	14,469	2,359.9	65,610	4.5
$75+$	4,203	1,210.9	24,555	5.8
All ages	45,661	501.5	189,775	4.2
Females				
<1	158	129.2	1,739	11.0
1-4	169	33.6	515	3.1
5-14	142	11.2	345	2.4
15-24	76	5.8	322	4.2
25-34	195	13.6	890	4.6
35-44	951	67.9	3,240	3.4
45-54	3,251	284.8	10,765	3.3
55-64	5,699	749.1	21,029	3.7
65-74	8,017	1,177.8	38,707	4.8
75+	2,972	526.4	20,128	6.8
All ages	21,630	235.5	97,680	4.5
Persons				
< 1	335	133.3	3,598	10.7
1-4	421	40.8	1,341	3.2
5-14	260	10.0	681	2.6
15-24	180	6.7	852	4.7
25-34	668	23.3	2,482	3.7
35-44	4,007	143.5	13,870	3.5
45-54	12,771	551.1	43,809	3.4
55-64	18,988	1,236.8	71,822	3.8
65-74	22,486	1,738.0	104,317	4.6
75+	7,175	787.0	44,683	6.2
All ages	67,291	367.9	287,455	4.3

(a) Principal or additional procedure; only one procedure per separation counted.
(b) Separations per 100,000 mid-1996 Australian population for sex and age group.

Table S34: Separations and patient days for electrophysiology studies by sex and age, public acute and private hospitals, 1995-96

Sex/age group (years)	Number of separations ${ }^{(a)}$	Age-specific separation rate ${ }^{(b)}$	Patient days	Average length of stay (days)
Males				
< 1	0	0.0	0	0.0
1-4	7	1.3	9	1.3
5-14	44	3.3	83	1.9
15-24	126	9.1	192	1.5
25-34	130	9.1	244	1.9
35-44	185	13.3	530	2.9
45-54	321	27.3	1,360	4.2
55-64	343	44.3	1,979	5.8
65-74	392	63.9	2,778	7.1
75+	153	44.1	929	6.1
All ages	1,701	18.7	8,104	4.8
Females				
< 1	0	0.0	0	0.0
1-4	7	1.4	24	3.4
5-14	45	3.6	67	1.5
15-24	153	11.6	261	1.7
25-34	189	13.2	345	1.8
35-44	229	16.4	510	2.2
45-54	279	24.4	808	2.9
55-64	236	31.0	795	3.4
65-74	208	30.6	1,064	5.1
75+	123	21.8	702	5.7
All ages	1,469	16.0	4,576	3.1
Persons				
< 1	0	0.0	0	0.0
1-4	14	1.4	33	2.4
5-14	89	3.4	150	1.7
15-24	279	10.4	453	1.6
25-34	319	11.2	589	1.9
35-44	414	14.8	1,040	2.5
45-54	600	25.9	2,168	3.6
55-64	579	37.7	2,774	4.8
65-74	600	46.4	3,842	6.4
75+	276	30.3	1,631	5.9
All ages	3,170	17.3	12,680	4.0

(a) Principal or additional procedure; only one procedure per separation counted.
(b) Separations per 100,000 mid-1996 Australian population for sex and age group.

Table S35: Separations and patient days for cardiac pacemaker device insertion (permanent) by sex and age, public acute and private hospitals, 1995-96

Sex/age group (years)	Number of separations ${ }^{(a)}$	Age-specific separation rate ${ }^{(b)}$	Patient days	Average length of stay (days)
Males				
< 1	5	3.9	103	20.6
1-4	5	0.9	42	8.4
5-14	16	1.2	89	5.6
15-24	19	1.4	96	5.1
25-34	26	1.8	75	2.9
35-44	62	4.5	225	3.6
45-54	157	13.4	656	4.2
55-64	394	50.9	2,213	5.6
65-74	1,089	177.6	6,044	5.6
75+	1,682	484.6	9,545	5.7
All ages	3,455	38.0	19,088	5.5
Females				
< 1	5	4.1	302	60.4
1-4	11	2.2	157	14.3
5-14	15	1.2	62	4.1
15-24	19	1.4	83	4.4
25-34	28	2.0	90	3.2
35-44	55	3.9	166	3.0
45-54	95	8.3	423	4.5
55-64	214	28.1	1,177	5.5
65-74	711	104.5	4,014	5.7
75+	1,428	252.9	8,356	5.9
All ages	2,581	28.1	14,830	5.8
Persons				
< 1	10	4.0	405	40.5
1-4	16	1.6	199	12.4
5-14	31	1.2	151	4.9
15-24	38	1.4	179	4.7
25-34	54	1.9	165	3.1
35-44	117	4.2	391	3.3
45-54	252	10.9	1,079	4.3
55-64	608	39.6	3,390	5.6
65-74	1,800	139.1	10,058	5.6
75+	3,110	341.1	17,901	5.8
All ages	6,036	33.0	33,918	5.6

(a) Principal or additional procedure; only one procedure per separation counted.
(b) Separations per 100,000 mid-1996 Australian population for sex and age group.

Medicare and Department of Veterans' Affairs medical benefits data

Table S36: Standard errors for age-standardised incidence rates ${ }^{(\mathbf{a})}$ for cardiovascular Medicare and DVA services by type of service and State and Territory, 1994-95

Type of service	State/Territory								Australia
	NSW	Vic	Qld	WA	SA	Tas	ACT	NT	
Diagnostic procedures and investigations									
Cardiovascular	10.9	11.5	13.3	17.7	17.8	31.2	58.2	58.2	5.9
Pacemaker testing	0.9	1.8	1.1	1.5	2.1	1.2	2.5	(b)	0.6
Vascular operations									
Arterial surgery	1.0	1.3	1.9	1.7	1.9	3.5	7.3	7.3	0.6
Transluminal balloon angioplasty	0.8	1.1	0.8	1.9	1.6	2.2	2.4	2.4	0.5
Transluminal stent insertion	0.4	0.4	0.4	0.6	0.6	0.8	0.0	0.0	0.2
Cardiothoracic operations									
Selective coronary arteriography	1.8	2.2	2.3	4.1	3.4	6.0	7.1	7.1	1.1
Permanent pacemaker insertion or replacement	0.6	0.8	0.8	1.3	1.1	1.8	1.1	(b)	0.4
Heart catheterisation and electrophysiological studies	0.6	0.5	0.6	0.9	1.0	1.4	1.7	1.7	0.3
Valvular procedures	0.4	0.5	0.6	0.8	0.9	1.2	1.9	1.9	0.2
Coronary artery bypass	0.9	0.9	1.3	1.6	1.9	2.6	3.9	3.9	0.5
Congenital cardiac surgery	0.3	0.4	0.2	0.6	0.6	1.1	1.4	1.4	0.2
Neurosurgical operations									
Cerebrovascular disease	0.2	0.3	0.3	0.3	0.4	0.9	(b)	(b)	0.1
Diagnostic imaging									
Cardiac ultrasound	4.8	4.5	5.3	7.2	7.0	11.8	24.5	24.5	2.4
Vascular ultrasound	4.5	4.7	5.6	6.6	6.7	12.0	24.2	24.2	2.4
Serial angiocardiography	1.8	1.9	2.0	3.2	3.0	0.9	6.4	6.4	1.0
Selective coronary arteriography	1.5	2.1	2.1	3.6	3.1	5.1	7.1	7.1	0.9
Other angiography and report	1.8	1.9	2.0	3.1	2.8	4.3	7.8	7.8	1.0
Cardiac nuclear imaging	1.5	1.3	0.8	1.1	1.4	3.8	7.5	7.5	0.7
Total	11.8	12.9	14.8	20.1	20.3	35.3	68.0	68.0	6.5

[^30]
National Heart Foundation cardiac surgery and coronary angioplasty registers

Table S37: Rates of open and closed heart operations and percentage mortality, 1953-1993

Year	Closed heart operations		Open heart operations	
	Mortality (\%) ${ }^{(a)}$	Rate ${ }^{(b)}$	Mortality (\%) ${ }^{(a)}$	Rate ${ }^{(b)}$
1953	5	32.3	-	0.0
1954	4	35.3	-	0.0
1955	5	38.8	-	0.0
1956	6	37.4	-	0.0
1957	6	38.8	28	1.9
1958	6	60.7	30	4.5
1959	6	66.5	28	7.2
1960	7	67.5	23	21.4
1961	6	64.3	18	34.0
1962	7	52.5	13	34.0
1963	6.7	54.2	15	42.8
1964	6.5	49.4	19	60.5
1965	5.8	52.6	18	71.1
1966	5.7	54.8	14	60.3
1967	7.4	54.8	12.7	69.3
1968	8.2	53.1	15.5	79.1
1969	9.2	49.4	12.1	87.7
1970	11.5	49.3	13.6	95.9
1971	6.6	40.5	12	111.3
1972	8.8	36.0	10	130.4
1973	4.4	37.7	8.6	146.9
1974	5.1	36.4	8.2	164.7
1975	5.4	49.1	6.8	205.8
1976	3.6	37.7	5	227.1
1977	4.4	43.1	5.3	271.1
1978	5.1	42.2	3.8	312.8
1979	3.5	40.0	3.3	361.7
1980	6.6	38.8	3.4	439.9
1981	4.9	41.3	2.9	504.8
1982	3.9	44.1	2.9	549.3
1983	5.9	40.6	2.5	610.5
1984	4.8	41.1	2.5	614.2
1985	5.9	36.3	3.1	651.2
1986	3.3	36.4	3.3	660.0
1987	4.5	40.3	2.8	744.4
1988	4.4	34.0	3.2	761.3
1989	3.2	39.3	2.6	813.6
1990	2.8	31.4	2.7	854.0
1991	3.4	33.6	2.6	929.1
1992	4.9	31.3	2.8	944.2
1993	2.6	30.5	2.5	1042.0

-nil
(a) Percentage of those receiving surgery.
(b) Surgery rates are calculated as the number per million mid-year total Australian population.

[^31]Table S38: Coronary artery bypass graft operations, 1970-1993

Year	Number without concomitant procedures	Number with concomitant procedures	Total
1970	50	0	50
1971	158	0	158
1972	268	15	283
1973	386	0	386
1974	621	0	621
1975	942	128	1,070
1976	1,333	173	1,506
1977	1,744	233	1,977
1978	2,279	300	2,579
1979	2,861	372	3,233
1980	3,816	419	4,235
1981	4,987	530	5,517
1982	5,720	524	6,244
1983	6,565	611	7,176
1984	6,641	605	7,246
1985	7,240	582	7,822
1986	7,351	697	8,048
1987	8,445	791	9,236
1988	8,786	780	9,566
1989	9,705	826	10,531
1990	10,433	948	11,381
1991	11,586	1,063	12,649
1992	11,708	1,227	12,935
1993	13,245	1,393	14,638

Source: National Heart Foundation of Australia 1996a.
Table S39: Coronary angioplasty procedures, 1980-1994

| Year | Number single vessel
 procedures | Number multi-vessel
 procedures | Total |
| :--- | ---: | ---: | ---: | | $\mathbf{1 1}$ | | |
| :--- | ---: | ---: |
| 1980 | 10 | 1 |
| 1981 | 45 | 0 |
| 1982 | 148 | 3 |
| 1983 | 336 | 12 |
| 1984 | 678 | 59 |
| 1985 | 1,127 | 117 |
| 1986 | 1,651 | 189 |
| 1987 | 2,163 | 220 |
| 1988 | 2,865 | 288 |
| 1989 | 3,753 | 466 |
| 1990 | 4,420 | 484 |
| 1991 | 5,243 | 483 |
| 1992 | 6,162 | 586 |
| 1993 | 7,577 | $\mathbf{7 3 7}$ |
| 1994 | 8,961 | 757 |

[^32]
Drug Utilization Sub-Committee Database

Table S40: Community use of drugs used in the management of hypertension, number of prescriptions, 1990-1995

Type of drug (ATC code) / source	1990	1991	1992	1993	1994	1995
Beta blockers (C07)						
Subsidised prescriptions (PBS/RPBS)	5,014,674	3,588,276	3,835,327	3,807,468	3,546,055	3,656,982
Estimated non-subsidised prescriptions ('Survey’)	1,547,273	2,030,139	1,836,969	1,553,943	1,488,231	1,405,802
Total beta blockers	6,561,947	5,618,415	5,672,296	5,361,411	5,034,286	5,062,784
Calcium channel blockers (C08)						
Subsidised prescriptions (PBS/RPBS)	4,063,600	4,337,511	5,229,016	5,916,258	6,304,039	7,209,099
Estimated non-subsidised prescriptions ('Survey')	85,683	102,035	164,097	115,643	110,106	144,126
Total calcium channel blockers	4,149,283	4,439,546	5,393,113	6,031,901	6,414,145	7,353,225
ACE inhibitors (C02E)						
Subsidised prescriptions (PBS/RPBS)	2,831,496	3,175,583	4,406,250	6,005,694	6,828,548	8,086,667
Estimated non-subsidised prescriptions ('Survey')	57,590	22,510	12,740	8,942	8,555	11,972
Total ACE inhibitors	2,889,086	3,198,093	4,418,990	6,014,636	6,837,103	8,098,639
Diuretics						
Low ceiling diuretics, thiazides (C03A)						
Subsidised prescriptions (PBS/RPBS)	606,568	422,174	420,787	394,478	348,991	324,298
Estimated non-subsidised prescriptions ('Survey')	290,466	202,590	175,399	137,087	134,204	114,711
Total low ceiling diuretics, thiazides	897,034	624,764	596,186	531,565	483,195	439,009
Low ceiling diuretics excl. thiazides (C03B)						
Subsidised prescriptions (PBS/RPBS)	474,367	358,917	420,533	468,862	515,957	582,706
Estimated non-subsidised prescriptions ('Survey')	72,669	178,531	175,862	166,544	141,353	34,393
Total low ceiling diuretics excl. thiazides	547,036	537,448	596,395	635,406	657,310	617,099
High ceiling diuretics (C03C)						
Subsidised prescriptions (PBS/RPBS)	1,519,692	1,244,081	1,330,397	1,356,587	1,334,133	1,362,745
Estimated non-subsidised prescriptions ('Survey')	318,595	228,950	188,246	166,143	169,743	159,752
Total high ceiling diuretics	1,838,287	1,473,031	1,518,643	1,522,730	1,503,876	1,522,497
Potassium sparing agents (C03D)						
Subsidised prescriptions (PBS/RPBS)	467,085	364,985	362,555	328,523	284,736	269,126
Estimated non-subsidised prescriptions ('Survey')	177,763	134,592	112,616	65,221	52,798	47,968
Total potassium sparing agents	644,848	499,577	475,171	393,744	337,534	317,094
						(continued)

Table S40 (continued): Community use of drugs used in the management of hypertension, number of prescriptions, 1990-1995

Type of drug (ATC code) / source	1990	1991	1992	1993	1994	1995
Diuretics and potassium sparing agents in combination (C03E)						
Subsidised prescriptions (PBS/RPBS)	1,230,594	674,392	669,533	610,635	539,042	509,137
Estimated non-subsidised prescriptions ('Survey')	135,434	310,538	267,159	216,522	194,030	177,767
Total diuretics and potassium sparing agents in combination	1,366,028	984,930	936,692	827,157	733,072	686,904
Total diuretics (C03)						
Subsidised prescriptions (PBS/RPBS)	4,298,306	3,064,549	3,203,805	3,159,085	3,022,859	3,048,012
Estimated non-subsidised prescriptions ('Survey’)	994,927	1,055,201	919,282	751,517	692,128	534,591
Total diuretics	5,293,233	4,119,750	4,123,087	3,910,602	3,714,987	3,582,603

Other antihypertensive drugs
Centrally acting antiadrenergic agents
(C02A) (C02A)

Subsidised prescriptions (PBS/RPBS)	$1,046,617$	676,695	636,570	542,123	456,144	423,630
Estimated non-subsidised prescriptions ('Survey')	46,965	129,325	96,723	73,915	64,809	55,312
Total centrally acting antiadrenergic agents Peripherally acting antiadrenergic agents (C02C)	$1,093,582$	806,020	733,293	616,038	520,953	478,942
Subsidised prescriptions (PBS/RPBS) Estimated non-subsidised prescriptions ('Survey') Total peripherally acting antiadrenergic agents 1,230,007	796,573	802,111	739,096	663,917	652,090	

Agents acting on arteriolar smooth
muscle (C02D)

Subsidised prescriptions (PBS/RPBS)	91,050	61,034	58,115	52,825	44,664	43,226
Estimated non-subsidised prescriptions ('Survey')	28,550	24,561	18,721	12,588	17,643	8,092
Total agents acting on arteriolar smooth muscle	119,600	85,595	76,836	65,413	62,307	51,318

Total other antihypertensives (C02A, C02C, C02D)

Subsidised prescriptions (PBS/RPBS)	$2,367,674$	$1,534,302$	$1,496,796$	$1,334,044$	$1,164,725$	$1,118,946$
Estimated non-subsidised						
prescriptions ('Survey')	123,022	388,470	307,784	241,744	175,642	140,101
Total other antihypertensives	$2,490,696$	$1,922,772$	$1,804,580$	$1,575,788$	$1,340,367$	$1,259,047$

[^33]Table S41: Community use of other cardiovascular drugs, number of prescriptions, 1990-1995

Type of drug (ATC code) / source	1990	1991	1992	1993	1994	1995
Antiarrhythmics (C01B)						
Subsidised prescriptions (PBS/RPBS)	373,417	331,761	336,773	331,866	320,788	347,528
Estimated non-subsidised prescriptions ('Survey')	9,785	4,084	1,866	2,234	3,155	1,416
Total antiarrhythmics	383,202	335,845	338,639	334,100	323,943	348,944
Inotropic drugs						
Cardiac glycosides (C01A)						
Subsidised prescriptions (PBS/RPBS)	1,070,319	829,276	812,165	772,289	720,384	713,335
Estimated non-subsidised prescriptions ('Survey')	216,364	147,926	124,475	104,182	98,528	91,962
Total cardiac glycosides	1,286,683	977,202	936,640	876,471	818,912	805,297
Cardiac stimulants excluding glycosides (C01C)						
Subsidised prescriptions (PBS/RPBS)	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Estimated non-subsidised prescriptions ('Survey')	194	382	223	739	561	771
Total cardiac stimulants excluding glycosides	194	382	223	739	561	771
Total inotropic drugs (C01A, C01C)						
Subsidised prescriptions (PBS/RPBS)	1,070,319	829,276	812,165	772,289	720,384	713,335
Estimated non-subsidised prescriptions ('Survey')	216,558	148,308	124,698	104,921	99,089	92,733
Total inotropic drugs	1,286,877	977,584	936,863	877,210	819,473	806,068
Nitrates (C01D)						
Subsidised prescriptions (PBS/RPBS)	2,109,686	1,872,858	2,061,562	2,308,566	2,369,709	2,533,435
Estimated non-subsidised prescriptions ('Survey')	171,256	109,675	80,063	49,924	40,599	32,364
Total nitrates	2,280,942	1,982,533	2,141,625	2,358,490	2,410,308	2,565,799
Peripheral vasodilators (C04)						
Subsidised prescriptions (PBS/RPBS)	104,779	46,023	40,984	38,531	8,756	3,392
Estimated non-subsidised prescriptions ('Survey')	40,550	31,241	23,853	16,785	13,167	8,373
Total peripheral vasodilators	145,329	77,264	64,837	55,316	21,923	11,765

n.a. not applicable.

Source: Drug Utilization Sub-Committee of the Pharmaceutical Benefits Advisory Committee.

Table S42: Community use of antithrombotic drugs, number of prescriptions, 1990-1995

Type of drug (ATC code) / source	1990	1991	1992	1993	1994	1995
Anticoagulants (B01AA, B01AB)						
Subsidised prescriptions (PBS/RPBS)	438,826	438,916	557,225	689,193	789,685	939,157
Estimated non-subsidised prescriptions ('Survey')	172,557	176,724	185,943	191,128	229,283	261,179
Total anticoagulants	611,383	615,640	743,168	880,321	1,018,968	1,200,336
Antiplatelet drugs (B01AC)						
Subsidised prescriptions (PBS/RPBS)	n.a.	n.a.	n.a.	753	3,760	8,456
Estimated non-subsidised prescriptions ('Survey')	86,485	91,760	79,266	74,667	84,826	86,466
Total antiplatelet drugs	86,485	91,760	79,266	75,420	88,586	94,922
Thrombolytic drugs (B01AD)						
Subsidised prescriptions (PBS/RPBS)	329	420	420	469	539	678
Estimated non-subsidised prescriptions ('Survey')	34	n.a.	104	48	43	18
Total thrombolytic drugs	363	420	524	517	582	696

[^34]Source: Drug Utilization Sub-Committee of the Pharmaceutical Benefits Advisory Committee.

Table S43: Community use of serum lipid lowering drugs, number of prescriptions, 1990-1995

Type of drug (ATC code) / source	1990	1991	1992	1993	1994	1995
Simvastatin						
Subsidised prescriptions (PBS/RPBS)	38,592	1,275,936	1,795,568	1,956,340	2,065,849	2,756,016
Estimated non-subsidised prescriptions ('Survey')	3,712	6,353	1,697	1,062	1,586	1,185
Total simvastatin	42,304	1,282,289	1,797,265	1,957,402	2,067,435	2,757,201
Pravastatin						
Subsidised prescriptions (PBS/RPBS)	n.a.	n.a.	n.a.	38,171	187,178	366,648
Estimated non-subsidised prescriptions ('Survey')	n.a.	n.a.	n.a.	106	129	311
Total pravastatin	0	0	0	38,277	187,307	366,959
Clofibrate						
Subsidised prescriptions (PBS/RPBS)	525,897	159,086	85,499	47,881	31,268	19,150
Estimated non-subsidised prescriptions ('Survey')	25,981	68,387	25,524	11,284	6,151	4,212
Total clofibrate	551,878	227,473	111,023	59,165	37,419	23,362
Gemfibrozil						
Subsidised prescriptions (PBS/RPBS)	n.a.	140,411	270,866	309,755	346,917	462,239
Estimated non-subsidised prescriptions ('Survey')	n.a.	273	379	295	373	230
Total gemfibrozil	0	140,684	271,245	310,050	347,290	462,469
Cholestyramine						
Subsidised prescriptions (PBS/RPBS)	412,460	223,085	138,466	102,380	83,662	75,740
Estimated non-subsidised prescriptions ('Survey')	5,267	1,153	200	91	85	207
Total cholestyramine	417,727	224,238	138,666	102,471	83,747	75,947
Colestipol hydrochloride						
Subsidised prescriptions (PBS/RPBS)	49,048	24,505	13,831	9,732	7,354	6,686
Estimated non-subsidised prescriptions ('Survey')	753	213	53	55	n.a.	22
Total colestipol hydrochloride	49,801	24,718	13,884	9,787	7,354	6,708
Nicotinic acid						
Subsidised prescriptions (PBS/RPBS)	29,691	15,855	13,860	12,803	26,550	29,637
Estimated non-subsidised prescriptions ('Survey')	35,479	15,930	12,720	8,785	6,472	1,614
Total nicotinic acid	65,170	31,785	26,580	21,588	33,022	31,251
Probucol						
Subsidised prescriptions (PBS/RPBS)	116,505	45,454	22,676	15,740	11,835	9,892
Estimated non-subsidised prescriptions ('Survey')	2,946	608	108	71	225	229
Total probucol	119,451	46,062	22,784	15,811	12,060	10,121
Total lipid lowering drugs						
Subsidised prescriptions (PBS/RPBS)	1,172,193	1,884,332	2,340,766	2,492,802	2,760,613	3,726,008
Estimated non-subsidised prescriptions ('Survey')	74,138	92,917	40,681	21,749	15,021	8,010
Total lipid lowering drugs	1,246,331	1,977,249	2,381,447	2,514,551	2,775,634	3,734,018

[^35]Table S44: Community use of drugs used in the management of hypertension, defined daily dose per 1,000 population per day, 1990-1995

Type of drug (ATC code) / source	1990	1991	1992	1993	1994	1995
Beta blockers (C07)						
Subsidised prescriptions (PBS/RPBS)	23.031	15.770	16.723	16.750	15.470	16.057
Estimated non-subsidised prescriptions ('Survey')	5.917	8.435	7.522	6.395	6.015	5.680
Total beta blockers	28.948	24.205	24.245	23.145	21.485	21.737
Calcium channel blockers (C08)						
Subsidised prescriptions (PBS/RPBS)	23.839	25.715	29.720	32.782	35.043	40.259
Estimated non-subsidised prescriptions ('Survey’)	0.439	0.363	0.707	0.497	0.430	0.507
Total calcium channel blockers	24.278	26.078	30.427	33.279	35.473	40.766
ACE inhibitors (C02E)						
Subsidised prescriptions (PBS/RPBS)	22.045	24.161	31.537	40.651	44.506	52.425
Estimated non-subsidised prescriptions ('Survey')	0.401	0.149	0.056	0.033	0.018	0.028
Total ACE inhibitors	22.446	24.310	31.593	40.684	44.524	52.453
Diuretics						
Low ceiling diuretics, thiazides (C03A)						
Subsidised prescriptions (PBS/RPBS)	10.785	7.684	7.686	7.213	6.368	6.015
Estimated non-subsidised prescriptions ('Survey')	5.154	3.752	3.280	2.543	2.457	2.110
Total low ceiling diuretics, thiazides	15.939	11.436	10.966	9.756	8.825	8.125
Low ceiling diuretics excl. thiazides (C03B)						
Subsidised prescriptions (PBS/RPBS)	4.947	3.677	4.217	4.615	5.533	7.700
Estimated non-subsidised prescriptions ('Survey')	0.882	1.809	1.740	1.623	1.434	0.463
Total low ceiling diuretics excl. thiazides	5.829	5.486	5.957	6.238	6.967	8.163
High ceiling diuretics (C03C)						
Subsidised prescriptions (PBS/RPBS)	23.751	20.077	21.576	22.003	21.370	21.706
Estimated non-subsidised prescriptions ('Survey')	4.725	3.385	2.787	2.455	2.474	2.326
Total high ceiling diuretics	28.476	23.462	24.363	24.458	23.844	24.032
Potassium sparing agents (C03D)						
Subsidised prescriptions (PBS/RPBS)	3.098	2.397	2.415	2.613	2.429	2.380
Estimated non-subsidised prescriptions ('Survey')	1.195	0.906	0.754	0.411	0.319	0.287
Total potassium sparing agents	4.293	3.303	3.169	3.024	2.748	2.667
Diuretics and potassium sparing agents in combination (C03E)						
Subsidised prescriptions (PBS/RPBS)	31.337	17.134	17.120	15.612	13.703	12.899
Estimated non-subsidised prescriptions ('Survey')	3.443	7.883	6.842	5.535	4.924	4.520
Total diuretics and potassium sparing agents in combination	34.780	25.017	23.962	21.147	18.627	17.419
Total diuretics (C03)						
Subsidised prescriptions (PBS/RPBS)	73.918	50.969	53.014	52.056	49.403	50.700
Estimated non-subsidised prescriptions ('Survey')	15.399	17.735	15.403	12.567	11.608	9.706
Total diuretics	89.317	68.704	68.417	64.623	61.011	60.406

(continued)

Table S44 (continued): Community use of drugs used in the management of hypertension, defined daily dose per 1,000 population per day, 1990-1995

Type of drug (ATC code) / source	1990	1991	1992	1993	1994	1995
Other antihypertensive drugs						
Centrally acting antiadrenergic agents (C02A)						
Subsidised prescriptions (PBS/RPBS)	4.178	2.674	2.491	2.134	1.775	1.645
Estimated non-subsidised prescriptions ('Survey')	0.165	0.492	0.362	0.281	0.245	0.211
Total centrally acting antiadrenergic agents	4.343	3.166	2.853	2.415	2.020	1.856
Peripherally acting antiadrenergic agents (C02C)						
Subsidised prescriptions (PBS/RPBS)	9.374	6.692	6.712	6.258	5.554	5.476
Estimated non-subsidised prescriptions ('Survey')	0.268	1.257	0.926	0.757	0.389	0.299
Total peripherally acting antiadrenergic agents	9.642	7.949	7.638	7.015	5.943	5.775
Agents acting on arteriolar smooth muscle (C02D)						
Subsidised prescriptions (PBS/RPBS)	0.700	0.477	0.456	0.417	0.356	0.351
Estimated non-subsidised prescriptions ('Survey')	0.187	0.169	0.131	0.089	0.075	0.065
Total agents acting on arteriolar smooth muscle	0.887	0.646	0.587	0.506	0.431	0.416
Total other antihypertensives (C02A, C02C, C02D)						
Subsidised prescriptions (PBS/RPBS)	14.252	9.843	9.659	8.809	7.685	7.472
Estimated non-subsidised prescriptions ('Survey')	0.620	1.918	1.419	1.127	0.709	0.575
Total other antihypertensives	14.872	11.761	11.078	9.936	8.394	8.047

[^36]Table S45: Community use of other cardiovascular drugs, defined daily dose per 1,000 population per day, 1990-1995

Type of drug (ATC code) / source	1990	1991	1992	1993	1994	1995
Antiarrhythmics (C01B)						
Subsidised prescriptions (PBS/RPBS)	1.446	1.285	1.309	1.309	1.280	1.395
Estimated non-subsidised prescriptions ('Survey')	0.031	0.007	0.000	0.000	0.001	0.000
Total antiarrhythmics	1.477	1.292	1.309	1.309	1.281	1.395
Inotropic drugs						
Cardiac glycosides (C01A)						
Subsidised prescriptions (PBS/RPBS)	9.729	8.024	8.289	8.135	7.641	7.633
Estimated non-subsidised prescriptions ('Survey')	2.161	1.642	1.500	1.257	1.195	1.138
Total cardiac glycosides	11.890	9.666	9.789	9.392	8.836	8.771
Cardiac stimulants excluding glycosides(C01C)						
Subsidised prescriptions (PBS/RPBS)	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Estimated non-subsidised prescriptions ('Survey')	0.000	0.000	0.000	0.000	0.000	0.000
Total cardiac stimulants excluding glycosides	0.000	0.000	0.000	0.000	0.000	0.000
Total inotropic drugs (C01A, C01C)						
Subsidised prescriptions (PBS/RPBS)	9.729	8.024	8.289	8.135	7.641	7.633
Estimated non-subsidised prescriptions ('Survey')	2.161	1.642	1.500	1.257	1.195	1.138
Total inotropic drugs	11.890	9.666	9.789	9.392	8.836	8.771
Nitrates (C01D)						
Subsidised prescriptions (PBS/RPBS)	11.852	10.735	12.184	14.289	15.020	16.535
Estimated non-subsidised prescriptions ('Survey')	0.812	0.562	0.405	0.282	0.236	0.221
Total nitrates	12.664	11.297	12.589	14.571	15.256	16.756
Peripheral vasodilators (C04)						
Subsidised prescriptions (PBS/RPBS)	0.551	0.361	0.316	0.294	0.060	0.021
Estimated non-subsidised prescriptions ('Survey')	0.187	0.148	0.121	0.089	0.070	0.039
Total peripheral vasodilators	0.738	0.509	0.437	0.383	0.130	0.060

Table S46: Community use of antithrombotic drugs, defined daily dose per 1,000 population per day, 1990-1995

Type of drug (ATC code) / source	1990	1991	1992	1993	1994	1995
Anticoagulants (B01AA, B01AB)						
Subsidised prescriptions (PBS/RPBS)	1.118	1.087	1.399	1.706	1.899	2.224
Estimated non-subsidised prescriptions ('Survey')	0.416	0.423	0.450	0.472	0.555	0.638
Total anticoagulants	1.534	1.510	1.849	2.178	2.454	2.862
Antiplatelet drugs (B01AC)						
Subsidised prescriptions (PBS/RPBS)	n.a.	n.a.	n.a.	0.002	0.018	0.039
Estimated non-subsidised prescriptions ('Survey')	0.491	0.550	0.461	0.416	0.488	0.534
Total antiplatelet drugs	0.491	0.550	0.461	0.418	0.506	0.573
Thrombolytic drugs (B01AD)						
Subsidised prescriptions (PBS/RPBS)	0.000	0.000	0.000	0.000	0.000	0.000
Estimated non-subsidised prescriptions ('Survey')	0.000	n.a.	0.000	0.000	0.000	0.000
Total thrombolytic drugs	0.000	0.000	0.000	0.000	0.000	0.000

n.a. not applicable.

Source: Drug Utilization Sub-Committee of the Pharmaceutical Benefits Advisory Committee.

Table S47: Community use of serum lipid lowering drugs, defined daily dose per 1,000 population per day, 1990-1995

Type of drug (ATC code) / source	1990	1991	1992	1993	1994	1995
Simvastatin						
Subsidised prescriptions (PBS/RPBS)	0.153	5.148	7.503	8.413	8.909	12.380
Estimated non-subsidised prescriptions ('Survey')	0.014	0.023	0.005	0.002	0.004	0.001
Total simvastatin	0.167	5.171	7.508	8.415	8.913	12.381
Pravastatin						
Subsidised prescriptions (PBS/RPBS)	n.a.	n.a.	n.a.	0.116	0.582	1.260
Estimated non-subsidised prescriptions ('Survey')	n.a.	n.a.	n.a.	0.000	0.000	0.000
Total pravastatin	0.000	0.000	0.000	0.116	0.582	1.260
Clofibrate						
Subsidised prescriptions (PBS/RPBS)	2.128	0.638	0.338	0.190	0.126	0.076
Estimated non-subsidised prescriptions ('Survey')	0.105	0.275	0.099	0.046	0.024	0.016
Total clofibrate	2.233	0.913	0.437	0.236	0.150	0.092
Gemfibrozil						
Subsidised prescriptions (PBS/RPBS)	n.a.	0.667	1.281	1.484	1.655	2.237
Estimated non-subsidised prescriptions ('Survey')	n.a.	0.000	0.000	0.000	0.000	0.000
Total gemfibrozil	0.000	0.667	1.281	1.484	1.655	2.237
Cholestyramine						
Subsidised prescriptions (PBS/RPBS)	1.858	0.996	0.614	0.457	0.371	0.337
Estimated non-subsidised prescriptions ('Survey')	0.022	0.004	0.000	0.000	0.000	0.000
Total cholestyramine	1.880	1.000	0.614	0.457	0.371	0.337
Colestipol hydrochloride						
Subsidised prescriptions (PBS/RPBS)	0.240	0.117	0.064	0.049	0.035	0.033
Estimated non-subsidised prescriptions ('Survey')	0.002	0.000	0.000	0.000	n.a.	0.000
Total colestipol hydrochloride	0.242	0.117	0.064	0.049	0.035	0.033
Nicotinic acid						
Subsidised prescriptions (PBS/RPBS)	0.104	0.056	0.049	0.047	0.087	0.100
Estimated non-subsidised prescriptions ('Survey')	0.085	0.035	0.031	0.024	0.019	0.004
Total nicotinic acid	0.189	0.091	0.080	0.071	0.106	0.104
Probucol						
Subsidised prescriptions (PBS/RPBS)	0.559	0.218	0.106	0.074	0.055	0.047
Estimated non-subsidised prescriptions ('Survey')	0.013	0.002	0.000	0.000	0.000	0.000
Total probucol	0.572	0.220	0.106	0.074	0.055	0.047
Total lipid lowering drugs						
Subsidised prescriptions (PBS/RPBS)	5.042	7.840	9.955	10.830	11.820	16.470
Estimated non-subsidised prescriptions ('Survey')	0.241	0.339	0.135	0.072	0.047	0.021
Total lipid lowering drugs	5.283	8.179	10.090	10.902	11.867	16.491

n.a. not applicable.

Source: Drug Utilization Sub-Committee of the Pharmaceutical Benefits Advisory Committee.

Disease costs and impact study

Table S48: Health care costs of all cardiovascular disease (\$ '000) by sex and age, 1993-94

Sex / age (years)	Hospital admitted patient ${ }^{(a)}$	Hospital outpatient	Nursing home	Medical ${ }^{(b)}$	Allied health professional	Pharmaceutical	Other ${ }^{(c)}$	Total
Males								
0-4	1,507	2,441	-	641	-	73	296	4,958
5-14	1,871	2,118	-	198	-	201	262	4,650
15-24	6,339	4,392	-	4,549	321	1,465	1,079	18,145
25-34	13,833	4,659	-	9,574	759	5,241	2,193	36,250
35-44	39,950	7,749	-	15,913	3,636	20,446	5,690	93,383
45-54	104,296	10,016	2,453	33,211	1,182	43,730	12,290	207,177
55-64	185,615	11,030	10,284	56,108	3,145	73,488	21,253	360,924
65-74	293,454	26,196	44,550	76,680	3,957	100,410	33,872	579,118
75+	229,581	4,659	159,890	47,085	7,987	58,011	30,587	537,800
n.s.	11	-	-	-	-	-	1	12
Total	876,458	73,258	217,177	243,960	20,987	303,065	107,514	1,842,419
Females								
0-4	1,224	292	-	307	-	92	123	2,037
5-14	1,207	482	-	664	-	375	170	2,898
15-24	4,571	985	-	2,890	-	1,583	625	10,653
25-34	13,949	7,645	-	9,069	812	6,195	2,369	40,039
35-44	27,793	4,301	1,126	18,916	975	18,419	4,547	76,077
45-54	48,057	19,560	1,267	31,132	2,592	46,082	9,753	158,444
55-64	85,427	9,414	7,375	48,959	1,244	82,995	15,345	250,760
65-74	175,911	9,790	30,524	70,191	5,780	131,131	27,068	450,395
75+	278,544	17,466	329,381	77,332	7,327	124,791	50,449	885,290
n.s.	380	-	-	-	-	-	22	403
Total	637,064	69,933	369,673	259,461	18,730	411,662	110,472	1,876,995
Persons								
0-4	2,730	2,732	-	948	-	165	419	6,995
5-14	3,078	2,599	-	862	-	576	432	7,548
15-24	10,910	5,376	-	7,439	321	3,047	1,704	28,798
25-34	27,782	12,304	-	18,643	1,571	11,436	4,562	76,289
35-44	67,743	12,050	1,126	34,830	4,611	38,863	10,237	169,461
45-54	152,353	29,575	3,720	64,343	3,774	89,811	22,043	365,621
55-64	271,043	20,443	17,659	105,068	4,389	156,484	36,598	611,684
65-74	469,365	35,986	75,074	146,871	9,737	231,540	60,940	1,029,513
75+	508,126	22,125	489,271	124,417	15,313	182,802	81,036	1,423,090
n.s.	392	-	-	-	-	-	23	415
Total	1,513,522	143,191	586,850	503,421	39,717	714,726	217,987	3,719,414

Components may not add to totals due to rounding.
-nil; n.s. not stated
(a) Includes public, private and repatriation hospitals.
(b) Medical services for private patients in hospitals are included under 'Hospital admitted patient'.
(c) Includes costs for the following areas of recurrent health expenditure-'Research', 'Other institutional (nec)', 'Administration', and 'Other noninstitutional'.

Source: Australian Institute of Health and Welfare, Disease Costs and Impact Study.

Table S49: Health care costs of rheumatic heart disease (\$ '000) by sex and age, 1993-94

Sex / age (years)	Hospital admitted patient ${ }^{(a)}$	Hospital outpatient	Nursing home	Medical ${ }^{(b)}$	Allied health professional	Pharmaceutical	Other ${ }^{(c)}$	Total
Males								
0-4	36	-	-	28	-	45	6	114
5-14	239	-	-	-	-	-	13	251
15-24	301	208	-	24	-	55	31	619
25-34	334	14	-	16	-	1	19	384
35-44	503	42	-	13	-	5	29	592
45-54	888	178	-	119	-	93	68	1,346
55-64	1,588	202	61	528	-	37	145	2,898
65-74	1,786	53	150	65	-	79	112	2,245
75+	827	1	-	29	-	13	45	915
n.s.	-	-	-	-	-	-	-	-
Total	6,502	698	211	821	-	665	467	9,365
Females								
0-4	21	-	-	-	-	-	1	22
5-14	269	-	-	-	-	-	14	283
15-24	295	-	-	39	-	23	19	375
25-34	596	102	-	87	-	49	44	878
35-44	1,062	34	-	71	129	89	72	1,458
45-54	1,751	64	-	53	-	58	101	2,028
55-64	2,692	41	-	281	-	159	167	3,340
65-74	3,079	155	54	311	74	277	207	4,157
75+	1,393	11	259	160	-	152	104	2,081
n.s.	-	-	-	-	-	-	-	-
Total	11,158	408	314	1,002	203	808	730	14,622
Persons								
0-4	57	-	-	28	-	45	7	137
5-14	508	-	-	-	-	-	27	535
15-24	595	208	-	63	-	77	50	994
25-34	929	116	-	103	-	51	63	1,261
35-44	1,565	76	-	83	129	94	103	2,050
45-54	2,639	242	-	173	-	152	169	3,375
55-64	4,281	243	61	809	-	533	311	6,238
65-74	4,865	208	204	376	74	356	319	6,402
75+	2,220	12	259	190	-	165	149	2,996
n.s.	-	-	-	-	-	-	-	-
Total	17,660	1,106	525	1,824	203	1,473	1,198	23,987

Components may not add to totals due to rounding.
-nil
n.s. not stated
(a) Includes public, private and repatriation hospitals.
(b) Medical services for private patients in hospitals are included under 'Hospital admitted patient'.
(c) Includes costs for the following areas of recurrent health expenditure-'Research', 'Other institutional (nec)', 'Administration', and 'Other noninstitutional'.

Source: Australian Institute of Health and Welfare, Disease Costs and Impact Study.

Table S50: Health care costs of hypertensive disease (\$ '000) by sex and age, 1993-94

Sex / age (years)	Hospital admitted patient ${ }^{(a)}$	Hospital outpatient	Nursing home	Medical ${ }^{(b)}$	Allied health professional	Pharmaceutical	Other ${ }^{(c)}$	Total
Males								
0-4	14	-	-	-	-	-	1	15
5-14	32	-	-	-	-	-	2	35
15-24	239	-	-	1,674	-	413	170	2,497
25-34	579	2,498	-	4,600	-	4,059	859	12,595
35-44	919	-	-	9,401	2,947	16,061	2,149	31,476
45-54	1,288	3,281	50	16,263	624	34,007	4,065	59,577
55-64	1,834	-	61	22,503	1,779	50,132	5,588	81,897
65-74	2,321	3,426	376	26,250	1,500	60,354	6,900	101,127
75+	1,684	-	563	12,526	2,134	25,578	3,1111	45,596
n.s.	-	-	-	-	-	-	-	-
Total	8,911	9,204	1,049	93,216	8,984	190,604	22,845	334,814
Females								
0-4	28	-	-	83	-	59	13	183
5-14	70	-	-	154	-	246	34	505
15-24	140	-	-	927	-	752	133	1,953
25-34	393	3,309	-	3,162	-	3,444	755	11,064
35-44	898	1,634	-	7,980	685	13,447	1,827	26,771
45-54	1,474	11,585	60	17,966	2,479	37,174	5,180	75,918
55-64	2,191	4,799	88	28,489	1,003	67,634	7,631	111,835
65-74	3,890	1,242	380	36,160	3,398	93,377	10,138	148,586
75+	5,019	-	5,103	28,482	3,590	69,025	8,144	119,363
n.s.	-	-	-	-	-	-	-	-
Total	14,103	22,570	5,631	123,403	11,154	285,458	33,854	496,176
Persons								
0-4	43	-	-	83	-	59	13	198
5-14	103	-	-	154	-	246	37	540
15-24	379	-	-	2,601	-	1,165	304	4,449
25-34	972	5,807	-	7,762	-	7,503	1,615	23,659
35-44	1,817	1,634	-	17,381	3,632	29,808	3,974	58,246
45-54	2,762	14,866	110	34,229	3,103	71,180	9,245	135,495
55-64	4,025	4,799	149	50,992	2,782	117,766	13,219	193,732
65-74	6,212	4,668	755	62,410	4,898	153,732	17,038	249,712
75+	6,703	-	5,666	41,008	5,724	94,604	11,256	164,959
n.s.	-	-	-	-	-	-	-	-
Total	23,014	31,774	6,680	216,620	20,138	476,063	56,699	830,990

Components may not add to totals due to rounding.
—nil
n.s. not stated
(a) Includes public, private and repatriation hospitals.
(b) Medical services for private patients in hospitals are included under 'Hospital admitted patient'.
(c) Includes costs for the following areas of recurrent health expenditure-'Research', 'Other institutional (nec)', 'Administration', and 'Other noninstitutional'.

Source: Australian Institute of Health and Welfare, Disease Costs and Impact Study.

Table S51: Health care costs of coronary heart disease (\$ '000) by sex and age, 1993-94

Sex / age (years)	Hospital admitted patient ${ }^{(a)}$	Hospital outpatient	Nursing home	Medical ${ }^{(b)}$	Allied health professional	Pharmaceutical	Other ${ }^{(c)}$	Total
Males								
0-4	9	-	-	-	-	-	-	10
5-14	38	-	-	-	-	-	2	41
15-24	80	-	-	8	-	-	5	94
25-34	1,767	235	-	283	-	95	137	2,518
35-44	16,887	2,623	-	1,252	689	1,412	1,320	24,183
45-54	62,189	1,706	401	7,917	254	5,387	4,496	82,351
55-64	106,001	4,267	1,704	15,413	733	11,591	8,069	147,779
65-74	131,711	3,005	7,137	18,300	643	20,734	10,485	192,014
75+	59,920	1,109	18,943	8,287	1,607	15,050	6,002	109,917
n.s.	-	-	-	-	-	-	-	-
Total	378,602	11,945	28,184	51,460	3,927	54,270	30,518	558,906
Females								
0-4	7	-	-	-	-	-	-	7
5-14	3	-	-	13	-	19	2	37
15-24	59	-	-	-	-	-	4	62
25-34	394	-	-	581	-	222	69	1,265
35-44	3,122	374	205	1,750	-	531	346	6,328
45-54	13,113	1,838	60	2,610	113	2,280	1,156	21,170
55-64	33,036	864	1,580	6,652	92	5,853	2,776	50,855
65-74	66,195	2,015	4,012	12,146	678	18,693	5,992	109,730
75+	61,982	688	38,491	12,766	680	23,497	7,976	146,080
n.s.	1	-	-	-	-	-	-	2
Total	177,912	5,779	44,349	36,517	1,564	51,095	18,322	335,537
Persons								
0-4	16	-	-	-	-	-	1	17
5-14	42	-	-	13	-	19	4	78
15-24	139	-	-	8	-	-	9	156
25-34	2,161	235	-	864	-	317	207	3,784
35-44	20,008	2,997	205	3,002	689	1,944	1,666	30,511
45-54	75,302	3,544	461	10,527	368	7,667	5,652	103,521
55-64	139,037	5,131	3,284	22,065	826	17,444	10,846	198,634
65-74	197,905	5,020	11,149	30,446	1,321	39,428	16,476	301,744
75+	121,902	797	57,434	21,053	2,287	38,547	13,978	255,997
n.s.	1	-	-	-	-	-	-	2
Total	556,514	17,724	72,533	87,978	5,491	105,365	48,839	894,443

Components may not add to totals due to rounding.
—nil
n.s. not stated
(a) Includes public, private and repatriation hospitals
(b) Medical services for private patients in hospitals are included under 'Hospital admitted patient'.
(c) Includes costs for the following areas of recurrent health expenditure-'Research', 'Other institutional (nec)', 'Administration', and 'Other noninstitutional'.

Source: Australian Institute of Health and Welfare, Disease Costs and Impact Study.

Table S52: Health care costs of acute myocardial infarction (\$ '000) by sex and age, 1993-94

Sex / age (years)	Hospital admitted patient ${ }^{(a)}$	Hospital outpatient	Nursing home	Medical ${ }^{(b)}$	Allied health professional	Pharmaceutical	$\text { Other }(\mathrm{c})$	Total
Males								
0-4	6	-	-	-	-	-	-	6
5-14	-	-	-	-	-	-	-	-
15-24	37	-	-	-	-	-	2	39
25-34	685	16	-	15	-	1	41	757
35-44	4,376	-	-	-	-	-	253	4,629
45-54	12,622	73	200	481	-	140	781	14,297
55-64	18,967	138	487	561	4	238	1,178	21,573
65-74	25,171	165	2,855	1,505	-	318	1,734	31,747
75+	20,017	4	6,752	192	-	162	1,568	28,695
n.s.	-	-	-	-	-	-	-	-
Total	81,881	470	10,294	2,754	4	858	5,556	101,742
Females								
0-4	-	-	-	-	-	-	-	-
5-14	-	-	-	-	-	-	-	-
15-24	12	-	-	-	-	-	1	13
25-34	150	-	-	-	-	-	9	159
35-44	719	-	-	-	-	-	41	760
45-54	2,437	20	60	17	-	38	149	2,721
55-64	6,184	4	439	19	-	6	384	7,037
65-74	14,067	16	1,247	77	69	73	898	16,448
75+	23,126	15	13,234	350	-	88	2,126	38,939
n.s.	-	-	-	-	-	-	-	-
Total	46,695	56	14,980	463	69	205	3,609	66,076
Persons								
0-4	6	-	-	-	-	-	-	6
5-14	-	-	-	-	-	-	-	-
15-24	49	-	-	-	-	-	3	52
25-34	834	16	-	15	-	1	50	916
35-44	5,095	-	-	-	-	-	295	5,389
45-54	15,058	930	261	498	-	178	930	17,017
55-64	25,152	143	926	580	4	244	1,562	28,610
65-74	39,238	181	4,102	1,583	69	391	2,632	48,195
75+	43,143	19	19,986	542	-	250	3,694	67,635
n.s.	-	-	-	-	-	-	-	-
Total	128,575	451	25,274	3,217	73	1,063	9,165	167,819

Components may not add to totals due to rounding.
-nil
n.s. not stated
(a) Includes public, private and repatriation hospitals.
(b) Medical services for private patients in hospitals are included under 'Hospital admitted patient'.
(c) Includes costs for the following areas of recurrent health expenditure-'Research', 'Other institutional (nec)', 'Administration', and 'Other noninstitutional'.

Source: Australian Institute of Health and Welfare, Disease Costs and Impact Study.

Table S53: Health care costs of other forms of heart disease (\$ '000) by sex and age, 1993-94

Sex / age (years)	Hospital admitted patient ${ }^{(a)}$	Hospital outpatient	Nursing home	Medical ${ }^{(b)}$	Allied health professional	Pharmaceutical	Other ${ }^{(c)}$	Total
Males								
0-4	726	-	-	-	-	-	51	777
5-14	714	1,461	-	54	-	128	144	2,501
15-24	2,288	-	-	1,441	-	38	268	4,035
25-34	3,162	493	-	890	112	134	324	5,115
35-44	6,011	2,575	-	1,099	-	962	726	11,374
45-54	12,931	3,507	300	4,671	136	2,238	1,519	25,303
55-64	25,771	4,803	1,947	7,305	-	6,349	2,870	49,044
65-74	50,647	3,938	7,513	15,489	701	11,371	5,429	95,088
75+	61,310	4,417	46,607	14,472	1,433	12,464	8,459	149,163
n.s.	8	-	-	-	-	-	-	8
Total	163,569	21,194	56,368	45,420	2,382	33,684	19,791	342,407
Females								
0-4	615	-	-	224	-	-	54	892
5-14	565	-	-	14	-	52	40	671
15-24	1,327	-	-	642	-	227	144	2,340
25-34	2,015	-	-	935	-	603	242	3,794
35-44	3,161	1,782	-	2,266	-	2,075	589	9,873
45-54	6,609	5,530	121	3,447	-	3,590	1,192	20,489
55-64	13,687	2,459	790	6,415	43	5,277	1,759	30,430
65-74	36,072	2,041	5,259	10,764	432	12,288	4,053	70,909
75+	83,300	8,445	104,575	22,734	1,822	23,279	14,623	285,777
n.s.	318	-	-	-	-	-	18	337
Total	147,668	20,257	110,745	47,440	2,297	47,390	22,718	398,514
Persons								
0-4	1,341	-	-	224	-	-	105	1,669
5-14	1,278	1,461	-	67	-	180	186	3,173
15-24	3,615	-	-	2,083	-	264	412	6,375
25-34	5,177	493	-	1,825	112	736	567	8,909
35-44	9,172	4,356	-	3,365	-	3,038	1,316	21,247
45-54	19,540	9,038	421	8,118	136	5,828	2,711	45,792
55-64	39,458	7,261	2,737	13,719	43	11,624	4,630	79,473
65-74	86,718	5,979	12,772	26,252	1,133	23,660	9,483	165,997
75+	144,610	12,861	151,182	37,206	3,255	35,743	23,082	407,940
n.s.	326	-	-	-	-	-	20	345
Total	311,237	41,450	167,112	92,860	4,679	81,073	42,509	740,921

Components may not add to totals due to rounding.
-nil
n.s. not stated
(a) Includes public, private and repatriation hospitals.
(b) Medical services for private patients in hospitals are included under 'Hospital admitted patient'.
(c) Includes costs for the following areas of recurrent health expenditure-'Research', 'Other institutional (nec)', 'Administration', and 'Other noninstitutional'.

Source: Australian Institute of Health and Welfare, Disease Costs and Impact Study.

Table S54: Health care costs of cardiac dysrhythmias (\$ '000) by sex and age, 1993-94

Sex / age (years)	Hospital admitted patient ${ }^{(a)}$	Hospital outpatient	Nursing home	Medical ${ }^{(b)}$	Allied health professional	Pharmaceutical	Other ${ }^{(c)}$	Total
Males								
0-4	248	-	-	-	-	-	15	263
5-14	255	-	-	-	-	-	16	271
15-24	1,045	-	-	486	-	6	96	1,632
25-34	1,143	417	-	819	112	113	163	2,767
35-44	1,997	1,459	-	652	-	615	296	5,019
45-54	4,229	2,356	50	3,030	136	1,447	704	11,953
55-64	8,593	2,431	548	3,506	-	3,344	1,153	19,575
65-74	16,164	1,285	1,803	5,522	220	4,157	1,825	30,976
75+	18,275	1,132	8,909	3,880	227	3,197	2,231	37,851
n.s.	-	-	-	-	-	-	-	-
Total	51,949	9,080	11,310	17,895	695	12,880	6,499	110,307
Females								
0-4	247	-	-	-	-	-	15	263
5-14	250	-	-	-	-	-	15	266
15-24	661	-	-	506	-	213	86	1,467
25-34	981	-	-	371	-	358	107	1,818
35-44	1,507	1,580	-	1,970	-	1,828	433	7,318
45-54	2,712	3,697	60	2,345	-	2,394	702	11,909
55-64	5,134	1,418	263	4,012	-	3,171	876	14,874
65-74	11,609	839	651	4,213	-	4,820	1,385	23,516
75+	20,958	1,706	16,434	4,465	-	5,225	3,055	51,844
n.s.	-	-	-	-	-	-	-	-
Total	44,059	9,240	17,409	17,882	-	18,010	6,674	113,274
Persons								
0-4	495	-	-	-	-	-	31	526
5-14	505	-	-	-	-	-	32	537
15-24	1,705	-	-	992	-	219	184	3,099
25-34	2,124	417	-	1,190	112	472	271	4,585
35-44	3,504	3,039	-	2,622	-	2,444	727	12,336
45-54	6,941	6,053	110	5,375	136	3,841	1,406	23,862
55-64	13,727	3,848	811	7,518	-	6,515	2,030	34,449
65-74	27,773	2,124	2,454	9,735	220	8,977	3,211	54,492
75+	39,234	2,839	25,343	8,346	227	8,422	5,285	89,696
n.s.	-	-	-	-	-	-	-	-
Total	96,008	18,319	28,718	35,777	695	30,890	13,173	223,581

Components may not add to totals due to rounding.
—nil
n.s. not stated
(a) Includes public, private and repatriation hospitals.
(b) Medical services for private patients in hospitals are included under 'Hospital admitted patient'.
(c) Includes costs for the following areas of recurrent health expenditure-'Research', 'Other institutional (nec)', 'Administration', and 'Other noninstitutional'.

Source: Australian Institute of Health and Welfare, Disease Costs and Impact Study.

Table S55: Health care costs of heart failure (\$ '000) by sex and age, 1993-94

Sex / age (years)	Hospital admitted patient ${ }^{(a)}$	Hospital outpatient	Nursing home	Medical ${ }^{(b)}$	Allied health professional	Pharmaceutical	Other ${ }^{(c)}$	Total
Males								
0-4	193	-	-	-	-	-	12	204
5-14	47	731	-	26	-	93	53	949
15-24	154	-	-	11	-	-	9	175
25-34	296	19	-	17	-	5	19	355
35-44	646	165	-	52	-	96	56	1,015
45-54	2,242	514	200	571	-	559	239	4,326
55-64	7,098	1,773	1,339	2,747	-	2,324	900	16,181
65-74	20,495	2,336	5,409	8,489	461	6,381	2,570	46,142
75+	35,807	3,085	36,948	10,038	1,173	8,806	5,657	101,514
n.s.	8	-	-	-	-	-	-	8
Total	66,985	8,621	43,896	21,951	1,634	18,264	9,505	170,868
Females								
0-4	231	-	-	-	-	-	13	244
5-14	87	-	-	14	-	52	9	161
15-24	78	-	-	1	-	-	5	84
25-34	249	-	-	40	-	91	22	402
35-44	418	53	-	57	-	87	36	649
45-54	1,269	1,174	60	677	-	880	239	4,298
55-64	4,320	696	439	1,587	43	1,655	514	9,254
65-74	14,698	1,002	4,446	5,370	432	6,707	1,925	34,580
75+	54,609	6,471	86,411	17,538	1,822	17,502	10,883	195,236
n.s.	318	-	-	-	-	-	18	337
Total	76,276	9,395	91,356	25,284	2,297	26,974	13,663	245,245
Persons								
0-4	423	-	-	-	-	-	25	448
5-14	134	731	-	40	-	144	62	1,110
15-24	233	-	-	12	-	-	14	259
25-34	544	19	-	57	-	96	41	757
35-44	1,064	217	-	109	-	183	91	1,664
45-54	3,511	1,168	261	1,248	-	1,439	478	8,624
55-64	11,417	2,469	1,778	4,334	43	3,979	1,414	25,434
65-74	35,193	3,338	9,855	13,859	893	13,090	4,495	80,722
75+	90,416	9,556	123,359	27,576	2,995	26,307	16,540	296,750
n.s.	326	-	-	-	-	-	20	45
Total	143,262	18,017	135,252	47,235	3,931	45,237	23,180	416,113

Components may not add to totals due to rounding.
—nil
n.s. not stated
(a) Includes public, private and repatriation hospitals.
(b) Medical services for private patients in hospitals are included under 'Hospital admitted patient'.
(c) Includes costs for the following areas of recurrent health expenditure-'Research', 'Other institutional (nec)', 'Administration', and 'Other noninstitutional'.

Source: Australian Institute of Health and Welfare, Disease Costs and Impact Study.

Table S56: Health care costs of cerebrovascular disease (\$ '000) by sex and age, 1993-94

Sex / age (years)	Hospital admitted patient ${ }^{(a)}$	Hospital outpatient	Nursing home	Medical ${ }^{(b)}$	Allied health professional	Pharmaceutical	Other ${ }^{(c)}$	Total
Males								
0-4	160	-	-	56	-	-	12	228
5-14	270	-	-	-	-	-	15	285
15-24	819	107	-	245	145	32	75	1,423
25-34	1,554	-	-	280	73	11	106	2,024
35-44	3,658	-	-	230	-	131	220	4,240
45-54	8,482	128	1,502	340	61	283	593	11,390
55-64	18,365	-	5,294	4,051	172	997	1,586	30,466
65-74	44,665	5,097	22,388	6,281	802	2,688	4,498	86,418
75+	56,002	377	72,302	5,758	1,884	1,675	7,555	145,178
n.s.	4	-	-	-	-	-	-	4
Total	133,979	5,332	101,486	17,242	3,138	5,820	14,659	281,655
Females								
0-4	176	-	-	-	-	-	10	186
5-14	96	-	-	228	-	-	18	341
15-24	727	-	-	233	-	101	59	1,120
25-34	1,352	72	-	64	-	15	83	1,586
35-44	3,244	-	717	1,111	130	196	296	5,693
45-54	5,773	-	784	815	-	456	430	8,258
55-64	12,961	-	3,775	1,639	81	899	1,063	20,418
65-74	30,995	224	16,699	4,465	577	1,788	3,005	57,753
75+	80,053	8,024	141,942	5,617	826	3,751	13,188	253,402
n.s.	61	-	-	-	-	-	4	64
Total	135,438	8,320	163,917	14,172	1,614	7,206	18,154	348,821
Persons								
0-4	336	-	-	56	-	-	22	414
5-14	365	-	-	228	-	-	33	626
15-24	1,546	107	-	479	145	133	133	2,542
25-34	2,906	72	-	344	73	26	188	3,610
35-44	6,902	-	717	1,342	130	326	517	9,934
45-54	14,255	128	2,286	1,156	61	740	1,022	19,649
55-64	31,327	-	9,069	5,690	253	1,896	2,649	50,885
65-74	75,660	5,320	39,087	10,746	1,379	4,476	7,503	144,171
75+	136,056	8,024	214,244	11,375	2,710	5,427	20,744	398,580
n.s.	64	-	-	-	-	-	4	68
Total	269,417	13,652	265,403	31,415	4,752	13,026	32,813	630,476

Components may not add to totals due to rounding.
—nil
n.s. not stated
(a) Includes public, private and repatriation hospitals.
(b) Medical services for private patients in hospitals are included under 'Hospital admitted patient'.
(c) Includes costs for the following areas of recurrent health expenditure-'Research', 'Other institutional (nec)', 'Administration', and 'Other noninstitutional'.

Source: Australian Institute of Health and Welfare, Disease Costs and Impact Study.

Table S57: Health care costs of diseases of the arteries, arterioles and capillaries (\$ '000) by sex and age, 1993-94

Sex / age (years)	Hospital admitted patient ${ }^{(a)}$	Hospital outpatient	Nursing home	Medical ${ }^{(b)}$	Allied health professional	Pharmaceutical	Other ${ }^{(c)}$	Total
Males								
0-4	261	-	-	75	-	-	21	357
5-14	104	156	-	28	-	14	20	322
15-24	404	1,334	-	278	176	388	171	2,750
25-34	478	-	-	579	89	56	80	1,281
35-44	1,436	1,865	-	554	-	203	326	4,384
45-54	5,373	441	50	1,091	75	286	507	7,823
55-64	18,113	1,387	669	1,929	231	1,350	1,712	25,392
65-74	45,421	6,361	4,958	4,760	146	1,672	4,549	67,868
75+	35,973	-	10,878	3,176	928	1,367	3,697	56,021
n.s.	-	-	-	-	-	-	-	-
Total	107,563	11,545	16,556	12,470	1,645	5,336	11,081	166,197
Females								
0-4	137	-	-	-	-	-	9	146
5-14	82	-	-	88	-	-	11	181
15-24	265	-	-	119	-	5	25	413
25-34	654	1,171	-	618	29	82	167	2,722
35-44	1,346	-	102	1,213	-	181	185	3,029
45-54	2,428	-	60	821	-	409	261	3,979
55-64	6,340	-	88	1,074	24	705	578	8,808
65-74	18,930	2,802	1,898	2,380	345	1,599	2,052	30,004
75+	26,873	-	17,818	2,937	25	2,355	3,546	53,554
n.s.	-	-	-	-	-	-	-	-
Total	57,054	3,974	19,966	9,251	423	5,337	6,832	102,837
Persons								
0-4	398	-	-	75	-	-	30	503
5-14	186	156	-	116	-	14	31	503
15-24	669	1,334	-	398	176	392	195	3,163
25-34	1,132	1,171	-	1,197	118	138	245	4,003
35-44	2,782	1,865	102	1,767	-	386	509	7,411
45-54	7,801	441	110	1,912	75	695	768	11,802
55-64	24,453	1,387	757	3,003	255	2,056	2,290	34,200
65-74	64,350	9,164	6,856	7,140	490	3,271	6,602	97,872
75+	62,846	-	28,697	6,113	953	3,723	7,244	109,575
n.s.	-	-	-	-	-	-	-	-
Total	164,617	15,519	36,522	21,721	2,067	10,673	17,913	269,034

Components may not add to totals due to rounding.
-nil
n.s. not stated
(a) Includes public, private and repatriation hospitals.
(b) Medical services for private patients in hospitals are included under 'Hospital admitted patient'.
(c) Includes costs for the following areas of recurrent health expenditure-'Research', 'Other institutional (nec)', 'Administration', and 'Other noninstitutional'.

Source: Australian Institute of Health and Welfare, Disease Costs and Impact Study.

Table S58: Health care costs of atherosclerosis (\$ '000) by sex and age, 1993-94

Sex / age (years)	Hospital admitted patient ${ }^{(a)}$	Hospital outpatient	Nursing home	Medical ${ }^{(b)}$	Allied health professional	Pharmaceutical	Other ${ }^{(c)}$	Total
Males								
0-4	2	-	-	-	-	-	-	3
5-14	-	-	-	-	-	-	-	-
15-24	2	-	-	-	-	-	-	2
25-34	41	-	-	-	-	9	5	55
35-44	166	1,865	-	-	-	45	197	2,274
45-54	927	-	-	102	-	86	106	1,220
55-64	3,637	1,387	183	82	139	299	798	6,267
65-74	10,367	1,213	1,202	381	-	214	1,262	14,640
75+	7,145	-	2,251	122	-	227	919	10,664
n.s.	-	-	-	-	-	-	-	-
Total	22,288	4,466	3,635	687	139	879	3,030	35,123
Females								
0-4	3	-	-	-	-	-	-	3
5-14	-	-	-	-	-	-	-	-
15-24	7	-	-	-	-	-	-	8
25-34	24	-	-	-	-	-	2	26
35-44	124	-	-	-	-	-	12	136
45-54	653	-	-	-	-	89	70	812
55-64	1,516	-	-	-	-	111	153	1,780
65-74	4,678	2,331	651	314	-	333	784	9,089
75+	6,888	-	3,806	632	-	234	1,090	12,641
n.s.	-	-	-	-	-	-	-	-
Total	13,893	2,331	4,456	946	-	757	2,113	24,496
Persons								
0-4	5	-	-	-	-	-	-	5
5-14	-	-	-	-	-	-	-	-
15-24	9	-	-	-	-	-	-	10
25-34	64	-	-	-	-	9	7	81
35-44	291	1,865	-	-	-	45	207	2,409
45-54	1,580	-	-	102	-	174	176	2,032
55-64	5,153	1,387	183	82	139	409	694	8,048
65-74	15,045	3,544	1,853	694	-	547	2,047	23,729
75+	14,033	-	6,057	754	-	451	2,010	23,305
n.s.	-	-	-	-	-	-	-	-
Total	36,181	6,797	8,092	1,633	139	1,636	5,142	59,619

Components may not add to totals due to rounding.
—nil
n.s. not stated
(a) Includes public, private and repatriation hospitals.
(b) Medical services for private patients in hospitals are included under 'Hospital admitted patient'.
(c) Includes costs for the following areas of recurrent health expenditure-'Research', 'Other institutional (nec)', 'Administration', and 'Other noninstitutional'.

Source: Australian Institute of Health and Welfare, Disease Costs and Impact Study.

Table S59: Health care costs of peripheral vascular disease (\$ '000) by sex and age, 1993-94

Sex / age (years)	Hospital admitted patient ${ }^{(a)}$	Hospital outpatient	Nursing home	Medical ${ }^{(b)}$	Allied health professional	Pharmaceutical	Other ${ }^{(c)}$	Total
Males								
0-4	58	-	-	70	-	-	8	135
5-14	17	105	-	19	-	9	10	160
15-24	339	939	-	196	176	261	128	2,039
25-34	320	-	-	424	89	35	57	925
35-44	787	-	-	450	-	107	89	1,443
45-54	3,638	347	-	754	75	152	325	5,292
55-64	13,223	-	365	1,586	62	871	1,055	17,163
65-74	31,710	3,660	3,456	3,629	146	1,257	2,904	46,762
$75+$	27,096	-	7,690	2,520	928	933	2,563	41,729
n.s.	-	-	-	-	-	-	-	-
Total	77,188	5,051	11,511	9,648	1,475	3,636	7,139	115,647
Females								
0-4	24	-	-	-	-	-	1	25
5-14	19	-	-	35	-	-	3	57
15-24	131	-	-	119	-	5	17	272
25-34	382	518	-	292	12	44	83	1,331
35-44	759	-	102	891	-	120	120	1,993
45-54	1,120	-	60	403	-	187	115	1,885
55-64	3,792	-	88	715	24	397	324	5,339
65-74	11,932	352	1,247	1,637	169	875	1,052	17,265
$75+$	17,653	-	12,369	1,679	25	1,781	2,144	35,652
n.s.	-	-	-	-	-	-	-	-
Total	35,811	870	13,867	5,772	230	3,408	3,860	63,818
Persons								
0-4	81	-	-	70	-	-	10	160
5-14	36	105	-	54	-	9	14	218
15-24	470	939	-	315	176	265	145	2,310
25-34	702	518	-	716	100	79	140	2,256
35-44	1,546	-	102	1,340	-	238	209	3,436
45-54	4,759	347	60	1,157	75	338	439	7,176
55-64	17,015	-	453	2,302	86	1,267	1,381	22,502
65-74	43,642	4,012	4,703	5,266	315	2,132	3,955	64,026
75+	44,748	-	20,059	4,199	953	2,714	4,707	77,381
n.s.	-	-	-	-	-	-	-	-
Total	112,999	5,921	25,377	15,420	1,705	7,044	10,998	179,465

Components may not add to totals due to rounding.
-nil
n.s. not stated
(a) Includes public, private and repatriation hospitals.
(b) Medical services for private patients in hospitals are included under 'Hospital admitted patient'.
(c) Includes costs for the following areas of recurrent health expenditure-'Research', 'Other institutional (nec)', 'Administration', and 'Other noninstitutional'.

Source: Australian Institute of Health and Welfare, Disease Costs and Impact Study.

Glossary

Additional diagnoses

Diagnoses or conditions other than the principal diagnosis that affect a person's care in terms of requiring:

- therapeutic treatment;
- clinical evaluation;
- diagnostic procedure;
- extended length of stay; or
- increased nursing care and/ or monitoring.

Additional diagnoses include:

- co-morbid conditions, that is, co-existing conditions; and/or
- complications, that is, conditions that arose during the episode of care.

Additional procedures

All additional procedures undertaken during an episode of care.

Age-standardised rates

All estimates have been age-standardised (Armitage \& Berry 1987) to the estimated total mid-year Australian population in 1991. This produces an estimate of the rate which would have prevailed in the standard population if it had experienced the age-specific rates for the given condition or action taken.
Direct age standardisation, using the five year age groups ($0-4,5-9, \ldots, 75-79,80+$ years), was estimated as follows:

$$
\mathrm{ASR}=\Sigma \mathrm{r}_{\mathrm{i}} \mathrm{P}_{\mathrm{i}} / \Sigma \mathrm{P}_{\mathrm{i}}
$$

where ASR is the age-standardised rate, r_{i} is the age-specific rate for age group i, and P_{i} is the standard population in age group i.

Australian National Diagnosis Related Groups (AN-DRGs)

DRGs are a means of classifying hospital patients to provide a common basis for comparing factors such as cost effectiveness and quality of care across hospitals. Each AN-DRG represents a class of patient with similar clinical conditions requiring similar hospital services.

Average length of stay

Average length of stay is calculated as the total patient days for all patients separating during the reporting period divided by the number of patients separating.

Patient days

The number of full or partial days of stay for patients who were admitted for an episode of care and who underwent separation during the reporting period. A patient who is admitted and separated on the same day is allocated one patient day.

Principal diagnosis

The diagnosis established after study to be chiefly responsible for occasioning the patient's episode of care in hospital (National Health Data Committee 1995).

Principal procedure

The most significant procedure that was performed for treatment of the principal diagnosis (National Health Data Committee 1995).

Procedure

A procedure is one that (National Health Data Committee 1995):

- is surgical in nature;
- carries a procedural risk;
- carries an anaesthetic risk;
- requires specialised training; or
- requires special facilities or equipment only available in an acute care setting.

Separation

Separation is the process by which an admitted patient completes an episode of care, for example leaving the hospital by being discharged, by dying, by being transferred to another hospital for further care, or by beginning a new episode of care which results in a significant change in status (Australian Institute of Health and Welfare 1996a). Generally, a separation is synonymous with discharge (National Health Ministers 1996). Separations are counted instead of admissions because some information that classifies the episode of care can be determined only after the episode has concluded. For acute hospitals, the number of separations will be similar to the number of admissions for the same reporting period.

Index of data sources and their uses in this report

Australian and New Zealand Cardiothoracic Organ Transplant Registry

Hospital care - information about all heart and heart-lung transplants performed in Australia and New Zealand

Australian Bureau of Statistics' National Health Survey 1995

Non-hospital care - estimates of the self-reported prevalence of cardiovascular conditions and health related actions taken for these conditions.

Hospital care - estimates of the self-reported prevalence of recent hospitalisation (i.e. in the two weeks prior to interview) and hospitalisation in the 12 months prior to interview for cardiovascular conditions.

Drug use - estimates of the self-reported use of medications for cardiovascular conditions.

Australian casemix data

Hospital care - information on hospital activity for cardiovascular disease as measured by Australian National Diagnosis Related Groups (AN-DRGs).
Health care costs - information on average costs and costs by volume for AN-DRGs.

Disease Costs and Impact Study

Health care costs - estimates of health care costs for cardiovascular diseases 1993-94.

Drug Utilization SubCommittee database

Drug use-estimates of the community (i.e. non-public hospital) use of prescription medicines in Australia, and the costs of prescriptions subsidised by the Pharmaceutical Benefits Scheme.

Hunter Region Heart Disease Prevention Programme Risk Factor Prevalence Study

Non-hospital care - estimates of history of medical conditions and treatment.
Drug use-information on aspirin use.

Medical Labour Force Survey

Medical labour force-estimates of the numbers of practitioners registered and working in the specialties of cardiology, cardiothoracic surgery and vascular surgery.

Medicare and Department of Veterans' Affairs medical benefits data

Hospital care-information on the number of medical services provided and benefits paid for cardiovascular medical services that qualify for benefits under Medicare or the Department of Veterans' Affairs medical benefits schemes.

National Heart Foundation angioplasty register

Hospital care - information on all angioplasty performed in Australia.

National Heart Foundation cardiac surgery register

Hospital care - information on all cardiac surgery performed in Australia.

National Heart Foundation Risk Factor Prevalence Study

Non-hospital care-estimates of history of medical conditions and treatment.

National Hospital Morbidity database

Hospital care - estimates of the number of separations and the average length of stay for cardiovascular conditions and cardiovascular procedures in public and private acute care hospitals.

Newcastle MONICA Project

Hospital care - information on acute care for suspected cases of heart attack or coronary death among residents aged 25 to 69 years in the local government areas of Newcastle, Lake Macquarie, Maitland, Cessnock and Port Stephens.

Drug use-information on drugs prescribed before onset of the coronary event, during the event for those who went to hospital, and at discharge for those who went to hospital and were discharged alive.

Perth MONICA Project

Drug use - information is available on drugs prescribed before onset of the coronary event, during the event for those who went to hospital, and at discharge for those who went to hospital and were discharged alive.

Survey of Morbidity and Treatment in General Practice in Australia 1990-91

Non-hospital care - estimates of cardiovascular morbidity and its treatment in general practice.

Drug use-estimates of drugs prescribed for cardiovascular conditions and the use of specific cardiovascular drugs.

The 1995 Public Hospital Elective Surgery Waiting List Survey

Hospital care-information about elective surgery waiting lists in Australian public hospitals.

References

Alexander HM, Dobson AJ, Fraccaro R \& Kelly P 1995. Hunter Region Heart Disease Prevention Programme. Risk Factor Prevalence Study 1994 data book. Newcastle: Department of Statistics and Centre for Clinical Epidemiology and Biostatistics, University of Newcastle.
Armitage P \& Berry G 1987. Statistical methods in medical research. Melbourne: Blackwell Scientific Publications, 399-403.
Australian and New Zealand Cardiothoracic Organ Transplant Registry 1997. Sixth annual report: 1984 - 1996. Sydney: Heart \& Lung Transplant, St Vincent's Hospital.
Australian Bureau of Statistics 1997a. 1995 National Health Survey. User's guide. Catalogue No. 4363.0. Canberra: Australian Bureau of Statistics.
Australian Bureau of Statistics 1997b. 1995 National Health Survey. Cardiovascular and related conditions, Australia. Catalogue No. 4372.0. Canberra: Australian Bureau of Statistics.
Australian Bureau of Statistics 1997c. 1995 National Health Survey. Summary of results. Catalogue No. 4364.0. Canberra: Australian Bureau of Statistics.
Australian Institute of Health and Welfare 1994. Australia's health 1994: the fourth biennial report of the Australian Institute of Health and Welfare. Canberra: Australian Government Publishing Service.
Australian Institute of Health and Welfare 1996a. Australia's health 1996: the fifth biennial report of the Australian Institute of Health and Welfare. Canberra: Australian Government Publishing Service.
Australian Institute of Health and Welfare 1996b. Non-English speaking background and Indigenous status: identification in national health and welfare data collections. Canberra: Australian Institute of Health and Welfare.
Australian Institute of Health and Welfare 1996c. Medical labour force 1994. Canberra: Australian Institute of Health and Welfare (National Health Labour Force Series no. 6).
Australian Institute of Health and Welfare 1997a. Australian hospital statistics 1995-96. AIHW cat. no. HSE3. Canberra: Australian Institute of Health and Welfare (Health Services Series no. 10).
Australian Institute of Health and Welfare 1997b. Medical labour force 1995. Canberra: Australian Institute of Health and Welfare (National Health Labour Force Series no. 10).
Australian Institute of Health and Welfare 1998. Australian hospital statistics 1996-97. AIHW cat. no. HSE5. Canberra: Australian Institute of Health and Welfare (Health Services Series no. 11).
Bennett S, Dobson AJ \& Magnus P 1995. Outline of a national monitoring system for cardiovascular disease. Canberra: Australian Institute of Health and Welfare (Cardiovascular Disease Series; no. 4).
Boyle CA \& Dobson AJ 1995a. Morbidity from cardiovascular disease in Australia. Canberra: Australian Institute of Health and Welfare (Cardiovascular Disease Series no. 2).
Boyle CA \& Dobson 1995b. The accuracy of hospital records and death certificates for acute myocardial infarction. Aust NZ J Med 25:316-323.

Bridges-Webb C, Britt H, Miles, DA, Neary S, Charles J \& Traynor V 1992. Morbidity and treatment in general practice in Australia 1990-1991. Med J Aust 157(19 October Special Supplement):S1-S56.
Britt H, Meza RA \& Del Mar C 1996. Methodology of morbidity and treatment data collection in general practice in Australia: a comparison of two methods. Family Practice 13(5):462-467.
Commonwealth Department of Health and Family Services 1996a. Medicare statistics September Quarter 1996. Canberra: Commonwealth Department of Health and Family Services.
Commonwealth Department of Health and Family Services 1996b. Australian Casemix Report on Hospital Activity 1993-94. Canberra: Commonwealth Department of Health and Family Services.
Commonwealth Department of Health and Family Services 1997a. Australian statistics on medicines 1995. Canberra: Australian Government Publishing Service.
Commonwealth Department of Health and Family Services 1997b. Australian casemix report on hospital activity 1995-96. Canberra: Commonwealth Department of Health and Family Services.
Commonwealth Department of Health and Family Services 1997c. Top 10 drugs. Australian Prescriber 20(1): 17.
Commonwealth Department of Human Services and Health 1995. Medicare benefits schedule book. Operating from 1 November 1995. Canberra: Australian Government Publishing Service.
Commonwealth Department of Human Services and Health 1996. Australian statistics on medicines 1994. Canberra: Australian Government Publishing Service.
Deeble J 1991. Medical services through Medicare. National Health Strategy Background Paper No. 2. Melbourne: National Health Strategy.
Edmonds DJ, Dumbrell DM, Primrose JG, McManus P, Birkett DJ \& Demirian V 1993. Development of an Australian drug utilisation database. A report from the Drug Utilization Sub-Committee of the Pharmaceutical Benefits Advisory Committee. PharmacoEconomics 3(6): 427-432.
Harvey R 1991. Use of pharmaceuticals for CVD monitoring. Unpublished report.
Health Insurance Commission 1995. Annual report 1994-1995. Canberra: Health Insurance Commission.
Henry DA, Cully LR, Grigson T \& Lee C 1991. Recent trends in the prescribing of cholesterol lowering drugs in Australia. A report from the Drug Utilization Sub-Committee of the Pharmaceutical Benefits Advisory Committee. Med J Aust 155: 332-336.
Henry D, Ausburn L, Birkett D, Hirschhorn J, McManus P, Michell M \& Primrose J 1994. Patterns of use of antihypertensive drugs in Australia 1986-1993. Australian Prescriber 17(Suppl 1): 32-36.
Hurley SF, McNeil JJ \& Berbatis CG 1988. Sources of Australian pharmacoepidemiology data. Comm Health Stud X11(1): 82-96.
Lamberts H \& Wood M (eds) 1987. ICPC International Classification of Primary Care. Oxford: Oxford University Press.
Mathers C, Stevenson C, Carter R \& Penm R 1998. Disease costing methodology used in the Disease Costs and Impact Study 1993-94. Health and Welfare Expenditure Series No. 3. Canberra: Australian Institute of Health and Welfare (in press).

Mays L 1995. National report on elective surgery waiting lists for public hospitals 1994. Canberra: Australian Institute of Health and Welfare.
McClelland A 1991. Spending on health: the distribution of direct payments for health and medical services. National Health Strategy Background Paper No. 7. Melbourne: National Health Strategy.
Moon L 1996. Waiting for elective surgery in Australian public hospitals, 1995. Canberra: Australian Institute of Health and Welfare (Health Services Series no. 7).
National Health Data Committee 1995. National Health Data Dictionary. Version 4.0. Canberra: Australian Institute of Health and Welfare.
National Health Ministers' Benchmarking Working Group 1996. First national report on health sector performance indicators: public hospitals - the state of play. Canberra: Australian Institute of Health and Welfare.
National Heart Foundation of Australia 1996a. Cardiac surgery report no. 31. Canberra: National Heart Foundation of Australia.
National Heart Foundation of Australia 1996b. Coronary angioplasty report no. 10. Canberra: National Heart Foundation of Australia.

Repatriation Commission and the Department of Veterans' Affairs 1995. The annual reports of the Repatriation Commission and the Department of Veterans' Affairs 1994-1995. Canberra: Australian Government Publishing Service.
Risk Factor Prevalence Study Management Committee 1990. Risk Factor Prevalence Study: Survey No. 3 1989. Canberra: National Heart Foundation of Australia and Australian Institute of Health.
Sayer GP, Britt H, Meza RA, Charles J, Traynor V \& Miles DA 1994. The management of hypertension in general practice. Results from the Australian Morbidity and Treatment Survey, 1990-1991. Aust Fam Phys 23(4):697-702.
Steele P \& McElduff P 1995a. Hunter Region Heart Disease Prevention Programme. Newcastle MONICA data book - coronary events 1984-1994. Newcastle: Centre for Clinical Epidemiology and Biostatistics, University of Newcastle.
Steele P \& McElduff P 1995b. Hunter Region Heart Disease Prevention Programme. Newcastle MONICA data book - acute care 1984-1994. Newcastle: Centre for Clinical Epidemiology and Biostatistics, University of Newcastle.
Thompson PL, Parsons RW, Jamrozik K, Hockey RL, Hobbs MST \& Broadhurst RJ 1992. Changing patterns of medical treatment in acute myocardial infarction. Observations from the Perth MONICA Project 1984-1990. Med J Aust 157: 87-92.

Related publications

Waters A-M \& S Bennett S 1995. Risk factors for cardiovascular disease: A summary of Australian data. Australian Institute of Health and Welfare, Cardiovascular Disease Series no. 1. Canberra: AGPS.

Boyle CA \& Dobson A 1995. Morbidity from cardiovascular disease in Australia. Australian Institute of Health and Welfare, Cardiovascular Disease Series no. 2. Canberra: AGPS.
Waters A-M \& Bennett S 1995. Mortality from cardiovascular disease in Australia. Australian Institute of Health and Welfare, Cardiovascular Disease Series no. 3. Canberra: AGPS.

Bennett S, Dobson A \& P Magnus P 1995. Outline of a national monitoring system for cardiovascular disease. Australian Institute of Health and Welfare, Cardiovascular Disease Series no. 4. Canberra: AGPS.

Gajanayake I \& Bennett S 1997. Surveillance of cardiovascular mortality in Australia 19831994. Australian Institute of Health and Welfare, Cardiovascular Disease Series no. 5. Canberra: AGPS.
d'Espaignet E T 1994. Trends in Australian mortality: Diseases of the circulatory system 1950-1991. Australian Institute of Health and Welfare, Mortality Series no. 2. Canberra: AGPS.
Australian Institute of Health and Welfare 1997. Australian hospital statistics 1995-96. AIHW cat. No. HSE 3. Health Services Series no. 10. Canberra: AIHW.

Australian Institute of Health and Welfare 1998. Australian hospital statistics 1996-97. AIHW cat. No. HSE 5. Health Services Series no. 11. Canberra: Australian Institute of Health and Welfare.

Senes-Ferrari S (in press). Coronary angioplasty in Australia 1995. Australian Institute of Health and Welfare and National Heart Foundation, Cardiovascular Disease Series no. 8. Canberra: AIHW.
Senes-Ferrari S (in press). Cardiac surgery in Australia 1994. Cardiovascular Disease Series no. 9. Australian Institute of Health and Welfare and National Heart Foundation. Canberra: AIHW.

A selection of material produced by the Australian Institute of Health and Welfare is published on the Institute's web site at http:/ / www.aihw.gov.au.

[^0]: * The PBS dispensed price is the price to the pharmacist for the maximum quantity plus the pharmacist's mark up (10%) plus the dispensing fee.

[^1]: * Approximately 80% of pharmacies in Australia are members of the Pharmacy Guild of Australia (Commonwealth Department of Human Services and Health 1996).

[^2]: * It should be noted that, for most of the study period, written authority from the Health Insurance Commission was not required for prescribing clofibrate and so it was more readily available than cholestyramine and colestipol.

[^3]: (a) Go to bed; take panadol when needed; clear fluids; R.I.C.E.

[^4]: Source: AIHW derived from the Survey of Morbidity and Treatment in General Practice in Australia 1990-91.

[^5]: (a) Principal or additional procedure; only one procedure per separation counted.
 (b) Separations per 100,000 mid-1996 total Australian population.
 (c) Age-standardised to the mid-1991 total Australian population.
 *Estimate has a relative standard error greater than 25% and therefore should be interpreted with caution.

[^6]: (a) Principal or additional procedure.
 (b) Separations per 100,000 mid-1996 Australian population for sex and age group.

[^7]: (a) Principal or additional procedure.
 (b) Separations per 100,000 mid-1996 Australian population for sex and age group.

[^8]: (a) Incidence per 100,000 mid-1995 Australian population for each sex and age group.
 (b) Rate suppressed for confidentiality reasons.

[^9]: (a) Rate per 100,000 population age-standardised to the mid-1991 total Australian population.

[^10]: (a) Age-standardised to the mid-1991 total Australian population.

 SE: Standard error

[^11]: Source: Australian Institute of Health and Welfare 1997a.

[^12]: Source: Steele \& McElduff 1995b.

[^13]: (a) 'Chemist' price index from the Private Final Consumption Expenditure (PFCE) deflators produced by the Australian Bureau of Statistics used to adjust figures to 1995 prices.
 Note: n.a. not applicable; - data not available.

[^14]: Source: AIHW derived from the Survey of Morbidity and Treatment in General Practice in Australia 1990-91.

[^15]: Source: AIHW derived from the Survey of Morbidity and Treatment in General Practice in Australia 1990-91.

[^16]: (a) Includes cerebrovascular disease and after-effects of stroke.
 (b) Each person may have reported more than one type of condition and therefore components do not add to totals.
 -nil

 * Subject to high sampling variability.

[^17]: Source: Department of Health and Family Services, unpublished data.

[^18]: Streptokinase

[^19]: Source: Commonwealth Department of Human Services and Health 1995.

[^20]: Source: AIHW derived from the Survey of Morbidity and Treatment in General Practice in Australia 1990-91.

[^21]: (a) Components may not add to totals due to rounding.
 (b) Estimates include 7 problems managed.

[^22]: Source: AIHW derived from the Survey of Morbidity and Treatment in General Practice in Australia 1990-91.

[^23]: (a) Estimates include 3 problems managed.

[^24]: Source: AIHW derived from the Survey of Morbidity and Treatment in General Practice in Australia 1990-91.

[^25]: Source: AIHW derived from the Survey of Morbidity and Treatment in General Practice in Australia 1990-91.

[^26]: Source: AIHW derived from the Survey of Morbidity and Treatment in General Practice in Australia 1990-91.

[^27]: Source: AIHW derived from the Survey of Morbidity and Treatment in General Practice in Australia 1990-91.

[^28]: (a) Components may not add to totals due to rounding.
 (b) Estimates include 1,835 prescriptions for all drugs and 254 cardiovascular prescriptions for which sex unknown.

[^29]: Source: AIHW derived from the Survey of Morbidity and Treatment in General Practice in Australia 1990-91.

[^30]: (a) Rate per 100,000 population, age-standardised to the mid-1991 total Australian population.
 (b) Rate suppressed for confidentiality reasons, therefore standard error not shown.

 Sources: AIHW derived from data provided by the Medicare Estimates and Statistics Section of the Department of Health and Family Services, and the Statistics Section of the Department of Veterans' Affairs.

[^31]: Source: National Heart Foundation of Australia 1996a.

[^32]: Source: National Heart Foundation of Australia 1996b.

[^33]: Source: Drug Utilization Sub-Committee of the Pharmaceutical Benefits Advisory Committee

[^34]: n.a. not applicable.

[^35]: n.a. not applicable.

 Source: Drug Utilization Sub-Committee of the Pharmaceutical Benefits Advisory Committee.

[^36]: Source: Drug Utilization Sub-Committee of the Pharmaceutical Benefits Advisory Committee

